- 3481. Цепные дроби
Методы представления рациональных чисел цепными дробями и представления действительных иррациональных чисел правильными бесконечными цепными дробями. Способы оценки погрешности при замене действительного числа его подходящей дробью. Теорема Дирихле.
- 3482. Цепные дроби
Бесконечные и конечные цепные дроби. Приближение действительного числа рациональными дробями с заданным ограничением для знаменателя. Квадратические иррациональности и периодические цепные дроби. Представление действительных чисел цепными дробями.
- 3483. Цилиндр и конус
Цилиндр: основание, образующие, радиус, высота, осевое сечение. Призма, вписанная и описанная около цилиндра. Конус: образующие, высота, ось, сечение, касательная плоскость. Прямой, усеченный и меньший конус. Пирамида, вписанная и описанная около конуса.
- 3484. Цилиндрические функции
Изучение интегральных представлений Сонина, его аналитических свойств, разложение в ряд цилиндрической функции, рекуррентные соотношения и производящей функции. Функции Ханкеля, Вебера, функции мнимого аргумента, связь между цилиндрическими функциями.
Обучение параметрическому трехмерному моделированию в системе Fusion 360. Рендеры моделей взяты из скриншотов окна рендеринга Fusion 360, поскольку они имеют достаточно высокое разрешение, и даже этот рендер для предпросмотра занимает много времени.
- 3486. Цифровые автоматы
Понятие цифрового автомата, история разработки, современные тенденции. Составление таблицы соответствия. Основные понятия теории графов. Минимизация абстрактного автомата Мили. Исключение недостижимых состояний. Определение классов совместимости.
Рішення алгебраїчного рівняння третього ступеня. Обчислення періодичного режиму прямим інтегруванням до визначення коренів системи трансцендентних рівнянь ітераційними методами Ньютона та Стефенсена. Система диференційних рівнянь другого порядку.
- 3488. Частные производные
Характеристика частных производных по переменным в определенной точке. Сущность дифференциалов высших порядков, их классификация и задача. Основные экстремумы функции двух переменных. Главные правила нахождения наибольших и наименьших значений функции.
Общая характеристика частных производных и частных дифференциалов функций со многими переменными. Геометрический смысл частных производных и полного дифференциала. Основные правила вычисления дифференциалов и понятие частных производных высших порядков.
- 3490. Частные Ферма и логарифмирование в мультипликативной группе кольца вычетов по примарному модулю
Определение функций частное Ферма и их свойства. Примеры возможного использования функций Ф(а) для вычисления индексов элементов в группе Z(m). Методы получения и прикладное значение логарифмирования в мультипликативной группе кольца вычетов по модулю.
Анализ поведения системы в случае динамических возмущений. Применение новых методов исследования для различных классов объектов. Построение математической модели нелинейных процессов. Создание методологии оценки робастности в нестационарных системах.
Анализ пространства как трехмерного континуума. Возможность четырехмерной трактовки "мира". Оценка пространства Минковского как четырёхмерного псевдоевклидового пространства сигнатуры, предложенного в геометрической интерпретации пространства-времени.
Задачі геометрично нелінійного деформування оболонок з урахуванням обтиску нормалі на базі шестимодального варіанту теорії оболонок Тимошенка-Міндліна та формулювання відповідних задач. Умови стійкості та оцінок швидкості збіжності побудованих схем.
Розробка чисельного алгоритму для розв’язування квазістатичних задач пружно-пластичного деформування просторових тонкостінних конструкцій складної форми. Комплекс програм для проведення дослідження напружено-деформованого стану інженерних конструкцій.
Прямі лінійні, обернені нелінійні задачі. Початково-крайові для рівнянь параболічного та гіперболічного типів, включаючи векторний випадок (рівняння Нав'є-Стокса). Задачі реконструкції включення в обмеженому тілі за відомими даними Коші на границі тіла.
Поняття та характеристика унімодальної функції, порядок визначення її точок максимуму і мінімуму та умови екстремумів. Суть локальних та глобальних методів, особливості методів Больцано (поділу інтервалу навпіл), золотого перетину, рівномірної розбивки.
Побудування теорії узагальненої розв’язності крайової задачі. Умови керованості та існування оптимального керування для конкретних задач узагальненого керування (імпульсного, точкового, рухомого та ін.). Градієнт функціоналу якості, його гладкість.
Основи чисельних методів розв’язання задач алгебри, аналізу і звичайних диференціальних рівнянь. Теорія і алгоритми оптимізації диференціальних безперервних функцій за наявності обмежень і без них. Використання методу скінченних елементів у механіці.
- 3499. Чисельні методі
Розв’язок рівнянь в програмному середовищі Maple. Аналіз особливостей розв’язання диференційних рівнянь і побудови графіків. Характеристика метода Гауса. Розв’язання рівняння за допомогою Метода Ейлера та Рунге-Кута. Отримання дійсних коренів рівняння.
Дослідження процесів теплопереносу, переносу заряду, розподілу концентрації компонентів біохімічної реакції. Моделювання фізико-хімічних процесів в біосенсорних системах на основi напiвпровiдникових структур, створення математичного інструментарію.
- 3501. Числа 1-10. Закрепление
Проведение урока на закрепление знаний нумерации чисел от 1 до 10. Повторение прямого и обратного устного счёта. Работа с веером цифр и повторение состава чисел 6 и 7. Проведение физкультминутки. Решение задач по изучаемой теме и отгадывание загадок.
- 3502. Числа Бернуллі
Послідовність многочленів Апеля. Многочлени та числа Бернуллі. Основна властивість многочленів Бернуллі. Зв’язок з простими числами. Експоненційна генератриса послідовності. Правило винесення за знак біноміального коефіцієнта. Формальний степеневий ряд.
- 3503. Числа правят миром
Любопытные свойства натуральных чисел, которые обнаруживаются при выполнении над ними арифметических действий. Сущность задачи о ростовщике представителя знаменитой швейцарской династии математиков Якоба Бернулли. Приметы и суеверия о числах 7 и 13.
- 3504. Числа Фибоначчи
Краткие биографические данные о жизни Леонардо Пизанского - первого крупного математика средневековой Европы. Его математические труды: "Liber abaci", "Liber quadratorum", "Practica geometriae". Развитие алгебры и теории чисел. Сущность чисел Фибоначчи.
Развитие математики в Западной Европе. Изучение теоретико-числовых свойств чисел Фибоначчи, возможности их применения к решению задач. Применение числа Фибоначчи в вопросах, связанных с исследованием путей в различных геометрических конфигурациях.
Определение первой и второй производных с помощью интерполяционных формул Ньютона, Гаусса, Стирлинга и Бесселя. Вычисление интеграла по формулам левых и правых прямоугольников. Расчет интеграла по формуле с тремя десятичными знаками и формуле Симпсона.
- 3507. Численное интегрирование
Алгоритм вычисления интеграла с заданной точностью. Формулы левых, правых и средних прямоугольников. Составная функция трапеции. Квадратурные формулы Ньютона-Котеса. Принцип Рунге практического оценивания погрешностей. Расчеты в малом и в целом.
Характеристика и особенности численного дифференцирования. Рассмотрение исправленного метода Эйлера, блок-схема алгоритма. Применение численного дифференцирования, Решение обыкновенных дифференциальных уравнений первого порядка с начальными данными.
Исследование особенностей влияния неравномерной концентрации одной из фракций двухфракционной газовзвеси на параметры ударной волны, движущейся из чистого газа в газовзвесь. Моделирование движение прямого скачка уплотнения в двухфракционной газовзвеси.
Анализ процесса динамики сосуществования видов "жертв" и "хищников" в среде их обитания при периодическом внешнем воздействии. Проведение и проверка численных экспериментов для исследования устойчивости периодических процессов в эволюционных моделях.