- 3541. Понятие множества
Характеристика общих понятий теории множеств. Изучение основных операций над множествами. Изучение соответствия между множествами, отображения. Анализ кортежей, декартовых произведений. Бинарные отношения и их свойства. Описание элементов комбинаторики.
Анализ понятия и свойств непрерывных функций. Характеристика непрерывности некоторых элементарных функций. Классификация точек разрыва. Описание непрерывности функции в точке, на интервале и отрезке. Анализ экономического смысла непрерывной функции.
Геометрическое построение "золотого сечения". Построение Евклидом правильных 5- и 10-угольников. Интерес к "золотому сечению" среди ученых и художников в связи с его применениями в геометрии, искусстве и архитектуре. Ряд Фибоначчи. Красота по формуле.
Уравнение плоскости, проходящей через точку. Нормальный вектор плоскости. Исследование общего уравнения плоскости. Уравнение плоскости "в отрезках". Условия параллельности и перпендикулярности двух плоскостей. Нахождение расстояния от точки до плоскости.
Определённый интеграл - одно из основных понятий математического анализа. Первообразная, формула Ньютона-Лейбница. Сущность понятия, свойства определенного интеграла. Скорость прямолинейного движения тела. Примеры решения задач с определенным интегралом.
- 3546. Понятие определителей
Элементы теории матриц. Системы линейных уравнений. Элементы векторной алгебры. Прямая на плоскости. Определители третьего порядка. Кривые второго порядка. Плоскость и прямая в пространстве. Поверхности второго порядка. Понятие комплексных чисел.
- 3547. Понятие параболы
Парабола как множество точек плоскости, каждая из которых находится на одинаковом расстоянии от данной точки. Расстояние между фокусом и директрисой параболы. Расстояние по формуле расстояния между двумя точками. Каноническое уравнение параболы.
Числовая последовательность, понятие ее предела. Разновидности предела функции, его свойства. Бесконечно большие величины, определение и примеры решения задач. Ограниченная функция. Связь между ограниченной функцией и функцией, имеющей предел.
- 3549. Понятие производной
Понятие производной, ее геометрический, физический смысл. Производные высших порядков, изучение функции с помощью производной. Достаточные условия экстремума функции: нахождение экстремума, точка перегиба графика функции. Применение производной в алгебре.
Функция, определенная на элементах пространства элементарных событий. Дискретные и непрерывные случайные величины. Определение дифференциального закона распределения. Числовые характеристики случайных величин. Использование квантилей распределений.
Методы оценки влияния различных случайных факторов на рассматриваемые явления. Изучение пространства элементарных событий. Построение математической теории вероятностей. Расчет гипотезной формулы Бейеса. Определение суммы и производных двух событий.
- 3552. Понятие сферы
Ознакомление с понятиями сферы, шара, окружности, круга. Исследование и характеристика принципов взаимного расположения сферы и плоскости. Рассмотрение исторических сведений о сфере и шаре. Изучение особенностей изображения сферы. Анализ уравнения сферы.
В работе рассматриваются такие понятия как "задача" и "текстовая задача". Так же были выделены составные части текстовых задач, а также подробно описана одна из классификаций текстовых задач. Также показана актуальность умения решать текстовые задачи.
- 3554. Понятие тензора
Тензор как объект линейной алгебры. Общее определение тензора. Анализ тензоров первого и второго ранга, тензоров напряжения. Риманова метрика. Линейные операторы на векторах. Тензоры типа (0, k). Требования к ковариантному дифференцированию тензоров.
Основные виды числовых рядов. Критерий абсолютной сходимости. Особенности разложения элементарной функции в ряд Фурье. Ряд Фурье непериодических функций с заданным периодом. Разложение в ряд Фурье по косинусам и синусам. Ряд Фурье на полупериоде.
- 3556. Понятие эвристики
Эвристика как метод научного познания: особенности применения в математике, понятие доказательства в математике. Эвристические приемы построения математических доказательств. Особенности применения эвристического подхода при доказательстве теорем.
Понятие эвристики как метода научного познания, особенности ее применения в математике. Понятие доказательства в математике и его особенности, применение для его построения эвристических логических подходов. Эвристический подход при доказательстве теорем.
Рассмотрение элементов теории вероятностей. Испытание как осуществление комплекса условий. Элементарное событие – результат который может произойти при проведении испытания. Пространство совокупности элементарных событий – множество всех исходов испытания
Обзор идей философии математики К. Райта и Б. Хейла. Описание одной из проблем этого направления - связи понятий первого и второго уровня в программе основания математики. Основная идея Райта и Хейла, особенности и условия применения принципа Юма.
Математическое ожидание, дисперсия, коэффициенты корреляции - основные характеристики совместного распределения нескольких случайных величин. Специфические особенности применения теоремы умножения вероятностей для рассмотрения составных испытаний.
Системы счисления и способы написания в них натуральных чисел. Множество и подмножество рациональных чисел. Разложение на множители и свойства делимости. Основная теорема арифметики. Представление действительных чисел в виде бесконечных десятичных дробей.
Понятие, применение матрицы в построении экономическо-математических моделей. Системы линейных алгебраических уравнений, решение систем по формулам Крамера. Элементы матричного анализа и аналитической геометрии. Взаимное расположение прямых на плоскости.
Основні поняття теорії випадкових процесів, його реалізація. Ймовірність випадкового процесу: дискретного, неперервного часу або стану, математичного сподівання та дисперсії, квадратичного відхилення. Властивості кореляційних функцій випадкового процесу.
Сутність екстремуму функціоналу: максимуму та мінімуму, його розрахунок для різних типів функціоналів. Визначення оптимального закону керування об’єктом методом варіаційного числення. Характеристика рівняння Ейлера. Екстремальні криві функціонала.
Сутність випадкових процесів як процесів з дискретними станами. Дослідження поняття марківського випадкового процесу та його використання у біології, фізиці, теорії обслуговування. Ілюстрація марківських випадкових процесів за допомогою графу станів.
Векторний простір (лінійний простір) як безліч елементів, які називаються векторами, для яких визначені операції додавання і множення на число. Абстрактний векторний простір та властивості лінійного простору. Конкретні приклади векторного простору.
Розкриття питань застосування похідної для дослідження функцій на монотонність та екстремум, знаходження найбільшого та найменшого значення функцій. Розгляд прикладних задач на дослідження функцій, на складання рівнянь дотичної, нормалі та деяких інших.
Способи, за якими може бути задана функція: аналітичний, графічний, табличний, описовий та алгоритмічний. Визначення монотонних та строгомонотонних функцій. Ознаки функції від функції, або складної функції, або суперпозиції функцій та оберненої функції.
Розгляд типових помилок учнів під час вивчення змістової лінії виразів і перетворення виразів курсу алгебри, причини їх виникнення. Розробка методики організації превентивної діяльності вчителя математики під час вивчення цілих виразів та їх перетворень.
Вивчення різних алгоритмів оклюзивного виключення, проведення розбору кожного з них, його історію, оцінка необхідності у ньому, математичних і логічних основ алгоритму. Розробка власного рендер двигуна. Опис математичної і логічної основ алгоритму.