Интерпретация функции двух переменных на основе понятий дифференциального исчисления. Частные производные и дифференциал. Понятие производной по направлению. Градиент функции трех переменных. Уравнение касательной плоскости и нормали к поверхности.
Описание функций одной и многих переменных, исследование задач на максимум и минимум - локальных свойств функции. Использование высших производных. Необходимые условия и достаточные дифференциальные признаки экстремума. Понятие условного экстремума.
- 3453. Функции одной переменной
Определение функции и графика функции. Область определения и область значений функции, ее нули и экстремумы. Общая схема исследования функций: признаки возрастания и убывания, критические точки. Место и роль математики в менеджменте и экономике.
Сущность функции распределения случайной величины и ее свойства, плотность распределения вероятностей. Математическое ожидание случайной величины, его вероятностный смысл и свойства. Критерий согласия Пирсона, дисперсия случайной величины и ее свойства.
Функции и бинарные отношения. Рефлексивные, транзитивные и симметричные отношения. Диалектическое и историческое развитие фундаментальных понятий математики. Идея функциональной зависимости в первых математически выраженных соотношениях между величинами.
Понятие и характерные свойства функционально полных систем булевых функций как совокупности таких функций (f1, f2,… fk), что произвольная булева функция f может быть записана в виде формулы через функции этой совокупности. Принцип ее двойственности.
Рассмотрение основных свойств функций алгебры логики. Базис и основные законы булевых функций. Реализация сочетательного закона при использовании логической функции И для трех переменных. Конъюнктивная и дизъюнктивная формы закона поглощения переменных.
Связь функциональных операторов с ретрактами и пространствами Дугунджи. Классификация функциональных операторов. Пространства частичных отображений и пространства решений дифференциальных уравнений. Теорема Дугунджи для пространства с фильтрациями.
- 3459. Функциональные ряды
Признак Вейерштрасса о равномерной сходимости функционального ряда. Изучение метода нахождения интервала сходимости степенного ряда. Приближенное вычисление с помощью рядов Тейлора и Маклорена. Тригонометрический ряд Фурье от четных и нечетных функций.
- 3460. Функциональные ряды
Различные числовые ряды в математике. Рассмотрение убывающей геометрической прогрессии. Числовые интервалы в функциональных рядах. Математическое доказательство теоремы Абеля. Область сходимости степенного ряда. Интервал с центром в начале координат.
- 3461. Функциональные уравнения
Понятие функционального уравнения. Изучение простейших функциональных уравнений. Решение функциональных уравнений методом подстановки и методом Коши. Использование значений функции в некоторых точках. Графическое решение функциональных уравнений.
Понятие функциональных уравнений и их виды, основные способы решения и области применения. Характеристика функциональных неравенств и методы их решения. Приёмы решения задач с параметрами. Использование метода интервалов для решения неравенств.
- 3463. Функция
Понятие независимой переменной и зависимой переменной функции. Методика построения графика функции - множества всех точек координатной плоскости, абсциссы которых равны значениям независимой переменной, а ординаты - соответствующим значениям функции.
- 3464. Функция
Развитие понятия функции. Математический анализ и его две основные части: дифференциальное и интегральное исчисления. Определение функции и графика функции. Область определения и область значений функции. Виды функций: четные, нечетные, периодические.
Встановлення нового зображення для функцій від операторів зі степеневим зростанням норм степенів, дослідження його властивостей. Пошук оцінки для норм значень таких функцій. Співпадіння функцій від оператора з введеними за класичним означенням Данфорда.
- 3466. Функції та їх графіки
Необхідні передумови для формування поняття функції. Її аргументи та область визначення. Підмножина координатної площини та паралельне перенесення на вектор уздовж осі ординат. Періодичність тригонометричних функцій. Ознаки їх зростання та спадання.
Функції, їх властивості та області визначення. Поняття функціональної залежності. Три способи завдання функції: аналітичний, графічний і табличний. Загальні властивості функцій. Поділ алгебраїчних функцій на раціональні (цілі й дробові) та ірраціональні.
Опис властивостей просторів лінійних неперервних функціоналів над просторами цілих функцій експоненціального типу. Побудова функціонального числення наборів необмежених операторів в локально-опуклих згорткових алгебрах лінійних неперервних функціоналів.
Характеристика підходів до розв’язання рівняння коливань математичного маятника з квадратичним тертям. Дослідження варіанту наближеного розв’язання оберненої задачі ідентифікації коефіцієнта опору середовища. Обчислення амплітуд затухаючих коливань.
Подходы к определению алгоритма и их эквивалентность. Основные понятия булевых функций, декартово произведение и степень произвольного множества. Теорема о совершенной ДНФ. Виды логических и формальных исчислений. Характеристика предикат и квантор.
Понятие и сущность вектора, скалярные и векторные величины. Общая характеристика особенностей векторных величин. Схематическое изображение векторов, их описание и характеристика построения. Описание сложных векторов и сущность и положения закона сложения.
Интеграл Римана - важнейшее понятие математического анализа. Характеристика геометрического смысла данного выражения. Определение формулы Ньютона-Лейбница. Риманова сумма в пределе при измельчении разбиения - результат вычисления площади подграфика.
Золотое сечение как метод пропорционального деления отрезка на неравные части. Последовательность Фибоначчи — числовой ряд, в котором следующий член представляет собой сумму двух предыдущих. Роль фибоначчиевских коэффициентов в техническом анализе.
Методика определения численного значения площади геометрической фигуры. Основные характеристики равновеликих объектов. Площадь треугольника как половина произведения его основания на высоту. Современная формулировка и доказательство теоремы Пифагора.
Особенность вычисления двойного интеграла в декартовой и полярной системе координат. Ограничение области интегрирования сверху и снизу гладкими поверхностями и проектирование на плоскость. Определение объема тела, ограниченного параболическим цилиндром.
Суть строчной, столбцовой, диагональной, единичной и транспонированной матрицы. Особенность определителей и их свойств. Собственные значения и векторы многомерной таблицы. Анализ квадратичной формы переменных. Исследование систем линейных уравнений.
Особенность определения отрицания высказывания. Основная характеристика дизъюнкции и конъюнкции суждений. Главный анализ построения логической операции импликации. Сущность эквивалентности двух фраз. Изучение обозначения штриха Шеффера и стрелки Пирса.
Методи побудови математичних моделей технологічних об’єктів. Призначення компонентів системи. Перетворення вхідних сигналів у вихідні. Теоретичний аналіз фізико-хімічних процесів, що відбуваються в технологічному об'єкті. Процес виведення рівнянь.
Понятие и типы многочленов, принципы и закономерности их формирования. Свойства делимости многочленов. Метод неопределённых коэффициентов. Теорема Безу и ее следствия. Разложения многочлена на множители. Степень многочленов. Наименьшее общее кратное.
Трассировка соединений как одна из наиболее трудноразрешимых задач в общей проблеме автоматизации проектирования электронных устройств. Характеристика алгоритма для поиска пути между двумя ячейками – источником и приемником дискретного рабочего поля.