Обработка данных наблюдений и проверка разных гипотез. Построение гистограммы выборки и теоретической нормальной кривой. Элементы корреляционного анализа. Корреляционная таблица и корреляционное поле. Нахождение выборочного коэффициента корреляции.
Роль задач на построение в психическом развитии подростков. Задачи на построение в школьных учебниках. Геометрические построения с использованием линейки. Применение теоремы Дезарга для построения параллельных прямых. Задачи с недоступными элементами.
Понятие, предмет, задачи предмета "теории вероятностей", вероятность осуществления события, достоверное и противоположное событие. Вероятность осуществления двух или нескольких взаимно исключающих и независимых событий и вероятность их совпадения.
События, основные распределения в теории вероятностей. Операции над событиями. Формула полной вероятности. Формула Бейеса и Бернулли, повторение испытаний. Случайные величины, закон распределения дискретной случайной величины, биноминальное распределение.
Элементы теории вероятностей. Случайные события и их вероятности. Теоремы умножения и сложения вероятностей. Формула полной вероятности и Байеса. Повторные независимые испытания. Формула Бернулли. Дискретные случайные величины. Функция распределения.
Сиплициальные гомологии: определение и свойства. Комологии и формулы универсальных коэффициентов. Эйлерова характеристика и теорема Лефшеца. Гомоморфизм Бокштейна и изоморфизм Пуанкаре. Теорема о вырезании и точная последовательность Майера-Вьеториса.
- 3607. Элементы теории игр
Понятие об игровых моделях разрешения конфликтной ситуации. Виды и основные правила формализованной игры. Специфика определения оптимальной стратегии для каждого игрока. Алгоритм определения нижней и верхней цен игры, заданной платежной матрицей.
- 3608. Элементы теории множеств
Множество как одно из ключевых понятий математики, в частности, теории множеств и логики. Операции разности и дополнения и их антидистрибутивность относительно операций объединения и пересечения. Множества высших мощностей. Свойства операции объединения.
- 3609. Элементы теории множеств
Программа стандартизации математики. Канторовское определение и понятие множества, разработка аксиоматизации. Обозначение элементов и заключение в фигурные скобки, разделение запятыми. Характеристические условия и форма логического утверждения.
Характеристика формальных описаний элементов и систем, которые опираются на язык теории множеств и графов. Особенности элементов множества - любых объективных и субъективных понятий, объединяемых в соответствии с некоторым законом, правилом, признаком.
Понятие и назначение определителей, основные положения их теории, методы вычисления и свойства. Минор и алгебраическое дополнение элемента определителя. Метод эффективного понижения порядка. Сущность матриц и порядок проведения операций над ними.
Формулировка случайной функции определенной на вероятностном пространстве в узком смысле. Основные условия симметрии и согласованности семейства конечномерных распределений. Определение стандартного Пуассоновского процесса с заданной интенсивностью.
Определение понятия эллипс, его уравнение и свойства эллипса. Эллипс как центральная невырожденная кривая второго порядка и его каноническое уравнение. Формулы для определения длины дуги эллипса, а также формулы для периметра, и построение эллипса.
Обзор терапии детей, больных эмбриональными опухолями ЦНС, основанной на анализе факторов риска, течения заболевания. Оценка результатов комбинированного лечения, проведенного в рамках многоцентрового открытого нерандомизированного исследования.
Построение вариационного ряда случайной величины, представление графически эмпирических функций. Гипотеза о равенстве дисперсий, использование критериев Пирсона. Схема полигона абсолютных частот, построение гистограммы по необъединенным интервалам.
Характеристика фундаментального понятия статистической теории и вероятности распределения случайных величин. Особенности интегральной функции равномерности закономерных размеров. Проведение исследования дискретного ряда накопленных относительных частот.
- 3617. Явление симметрии
Изучение сущности и видов симметрии, под которой понимают неизменность объекта по отношению к каким-либо преобразованиям, выполненным над ним. Виды движений: осевая, центральная, зеркальная симметрия, поворот, параллельный перенос. Симметрия в природе.
Требования к применению формальных результатов в частотной интерпретации теории вероятностей. Определение теоретических величин, используемых в теореме на основе экспериментальных данных, и верификацию независимости данных. Трактование теоремы Бернулли.
Встановлення зв'язку між стійким інваріантним многовидом детермінованої динамічної системи та періодичними розв'язками у системі що збурюється випадковими імпульсами. Дослідження систем диференціальних рівнянь з регулярними та сингулярними збуреннями.