Система FLOWer как набор утилит, облегчающих написание параллельных программ, ее базирование на модели управления потоком данных. Реализация некоторых алгоритмов в системе FLOWer. Умножение матриц. Прямые и итерационные методы решения линейных систем.
Формулирование математической модели, описывающей нелинейную фазу развития возмущений в сжимаемом пограничном слое в поле центробежных сил при больших, но докритических значениях Рейнольдса и Гертлера. Изучение линейных задач теории устойчивости.
- 3363. Уравнение Бернулли
Уяснение физического смысла уравнения Бернулли. Определение потерь напора в трубопроводе переменного сечения. Способы измерения средней и локальной скоростей движения жидкости. Описание установки для демонстрации уравнения Бернулли, построение диаграммы.
- 3364. Уравнение Бернулли
Биография швейцарского математика, физика и физиолога Даниила Бернулли. Исследования по теории вероятностей. Открытия в области высшей математики и физики. Дифференциальные уравнения и построение графиков скоростного и пьезометрического напоров.
Анализ полярной системы координат на плоскости и в пространстве, формулы перехода к декартовым. Определение площади произвольной элементарной фигуры. Построение трёхлепестковой розы, архимедовой спирали и улитки Паскаля. Уравнение лемнискаты и кардиоиды.
Получения явных выражений и нелинейных рекуррентных соотношений для решений диофантовых уравнений с помощью алгебраических чисел. Нахождение простого решения диофантова уравнения и уравнения Пелля. Рассмотрение возможности обобщения данного подхода.
Обзор формульного выражения общих уравнений прямой, отсекаемой на соответствующих осях координат. Изучение уравнений, определяющих расположение прямых на плоскости. Построение графика системы полярной оси координат по уравнению плоскостной прямой.
Принцип определения уравнения прямой. Формула выражения линейной функции: расчет и построение прямых. Нахождение углового коэффициента и приведение уравнения к общему виду. Построение параллельной и перпендикулярной прямых, их угловой коэффициент.
- 3369. Уравнение регрессии
Многомерные совокупности. Методы обработки матрицы. Оценки математического ожидания. Виды зависимостей между величинами: функциональная и статистическая. Корреляционная зависимость. Оценка корреляционного момента. Выбор вида уравнения регрессии.
Исследование дифференциальных уравнений дробных порядков. Наличие в процессе эффекта памяти или нелокальности по времени. Эредитарость в уравнение Риккати. Определения производной дробного переменного порядков. Интегро-дифференциальная задача Коши.
- 3371. Уравнение синус-Гордона
Доказательство существования регулярного решения уравнения синус-Гордона на всей плоскости. Аналитическое решение уравнения и сетевой угол чебышевской сети на псевдосфере. Геометрическая интерпретация решений уравнения, понятие асимптотической полосы.
- 3372. Уравнение телепортации
Квазискалярное произведение двух точек на проективной плоскости. Общий вид формулы Эйлера. Пример телепортации прямой из гиперболической геометрии в эллиптическую. Внутренняя и наружная область окружности на сфере. Части тора, особенности геометрии.
- 3373. Уравнения в радикалах
Изучение эволюции уравнений и их решений. Теории вычислений Древнего Египта, способы решения квадратных уравнений в Древнем Вавилоне и арабских странах. Кубические уравнения Греции, формула Тартальи–Кардано. Методы решения уравнений высоких степеней.
Линейные, квадратные, тригонометрические уравнения и неравенства с параметром и к ним сводимые, их общая характеристика и математические свойства, направления исследования. Их разновидности и признаки, основные приемы и принципы решения, результаты.
Рассмотрение математического описания марковского процесса с дискретными состояниями и непрерывным временем на примере случайного процесса. Формулировка правила составления дифференциальных уравнений Колмогорова. Изучение процессов гибели и размножения.
Тригонометрическая система функций. Формулы интеграла Фурье для различных функций. Применение преобразования Фурье к задачам математической физики, электротехники. Решение уравнения Бесселя, возникающего при разделении переменных. Гармонический анализ.
Построение модели парной, линейной и нелинейной регрессии в эконометрике. Сущность нелинейных уравнений. Определение параметров в моделях парной регрессии. Характеристика метода наименьших квадратов. Понятие коэффициента детерминации и корреляции.
Определение координат и модулей векторов, угла между ребрами AB и AC, площади грани ABC, объема пирамиды, угла между прямой AD и плоскостью ABC. Решение уравнения высоты фигуры через вершину A и уравнения прямой, проходящей через определенные точки.
- 3379. Уравнения с модулем
Решение уравнений с модулем методом последовательного раскрытия модуля; метод интервалов (разбиения числовой прямой на промежутки), при помощи зависимостей между числами, их модулями и квадратами чисел. Использование геометрической интерпретации модуля.
- 3380. Уравнения с модулями
Понятие модуля (абсолютной величины) действительного числа. Основные свойства модуля и его геометрический смысл. Графическое решение квадратных уравнений. Схемы решений основных типов уравнений. Особенности решения уравнения со "сложным" модулем.
Понятие и геометрический смысл модуля. Изучение основных видов уравнений и способов их решений. Способы решения простейших уравнений с модулями. Применение метода интервалов для решения всех типов уравнений с модулями. Уравнения со "сложным" модулем.
Разработка метода исследования дифференциальных уравнений с-образными коэффициентами с помощью аппроксимирующих семейств операторов, являющихся возмущениями исходного оператора. Применение теории к исследованию уравнений с-образными коэффициентами.
Изучение свойств и описание состава пространств С.Л. Соболева: плотность, определения и обозначения. Исследование структуры интегральных операторов со слабой особенностью. Представления функции и теоремы вложения Соболева: эквивалент норм в пространстве.
Обгрунтування методу усереднення для нових класів нелінійних ДФР із початковими і крайовими умовами. Побудова ефективних, залежних від малого параметра, оцінок похибки методу усереднення. Дослідження існування та єдиності розв'язку сформульованих задач.
Методи усереднення задач Діріхле для нелінійних еліптичних рівнянь другого порядку в змінних областях. Умови збіжності послідовності розв'язків нелінійних задач в перфорованих областях. Гранична задача з додатковим членом, що має місткісний характер.
Інтегральні та поточкові оцінки розв’язків відповідних модельних нелінійних еліптичних та параболічних задач Діріхле в областях з тонкими порожнинами. Асимптотичний розклад для послідовності розв’язків задач, які розглядаються та збіжність усіх членів.
Использование традиционной формы вида усеченной пирамиды в строительстве древнеегипетских пирамид. Правила вычисления и построения правильной усеченной пирамиды, а также расчет площади через полупроизведение суммы периметров оснований и апофемы.
Условия Фукса, необходимые и достаточные для отсутствия в интегралах критических алгебраических особых точек. Доказательство теоремы Пенлеве о том, что интегралы рассматриваемых интегральных уравнений не имеют подвижных существенно особых точек.
- 3389. Условная вероятность
Изложение методов решения задач на нахождение условной вероятности: вероятность суммы двух несовместимых событий; вероятность совместного появления двух зависимых событий, равная произведению вероятности одного из них на условную вероятность второго.
Условные законы распределения непрерывных случайных величин, имеющих непрерывное совместное распределение. Условное математическое ожидание случайной величины. Сущность корреляции. Свойства ковариации. Нормальный закон распределения на плоскости.