Повне аналітичне описання фундаментального розв'язку одного параболічного рівняння зі зростаючими коефіцієнтами
З’ясування розв'язку задачі Коші. Розгляд параболічного за Петровським рівняння довільного порядку. Наявність членів з лінійно зростаючими на нескінченності коефіцієнтами. Відсутність залежності від просторових змінних. Застосування перетворення Фур'є.
Рубрика | Математика |
Предмет | Математика |
Вид | статья |
Язык | украинский |
Прислал(а) | Т.О. Заболотько |
Дата добавления | 25.08.2016 |
Размер файла | 360,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Диференціальні рівняння другого порядку, які допускають пониження порядку. Лінійні диференціальні рівняння II порядку зі сталими коефіцієнтами. Метод варіації довільних сталих як загальний метод розв’язування та й приклад розв’язання задачі Коші.
лекция [202,1 K], добавлен 30.04.2014Задача Коші і крайова задача. Двоточкова крайова задача для диференціального рівняння другого порядку. Види граничних умов. Метод, заснований на заміні розв’язку крайової задачі розв’язком декількох задач Коші. Розв'язування систем нелінійних рівнянь.
презентация [86,2 K], добавлен 06.02.2014Вивчення методів розв'язання лінійної крайової задачі комбінуванням двох задач Коші. Переваги та недоліки інших методів: прицілювання, колокацій, Гальоркіна, найменших квадратів та ін. Пошук єдиного розв'язку звичайного диференціального рівняння.
курсовая работа [419,2 K], добавлен 29.08.2010Основні поняття теорії диференціальних рівнянь. Лінійні диференціальні рівняння I порядку. Рівняння з відокремлюваними змінними. Розв’язування задачі Коші. Зведення до рівняння з відокремлюваними змінними шляхом введення нової залежної змінної.
лекция [126,9 K], добавлен 30.04.2014Ряди Фур'є за ортогональними системами тригонометричних функцій, ознаки їх збіжності. Постановка крайових задач, вивід рівняння теплопровідності. Принцип максимуму і теорема єдиності. Розв'язування неоднорідних задач параболічного типу для прямокутника.
дипломная работа [1,1 M], добавлен 24.01.2012Загальні властивості диференціальних рівнянь Ріккаті. Прості випадки інтегрованості в квадратурах. Побудова загального розв’язку у випадку, коли відомий один частинний розв’язок. Структура загального розв’язку, коли відомо два або три частинних розв’язки.
курсовая работа [134,0 K], добавлен 22.01.2013Етапи розв'язування задачі дослідження певного фізичного явища чи процесу, зведення її до диференціального рівняння. Методика та схема складання диференціальних рівнянь. Приклади розв'язування прикладних задач за допомогою диференціального рівняння.
контрольная работа [723,3 K], добавлен 07.01.2016Поняття особливої точки системи або рівняння. Пошук розв’язку характеристичного рівняння. Стійкий та нестійкий вузли, типові траєкторії. Дослідження особливої точки рівняння, способи побудови інтегральних кривих. Власний вектор матриці коефіцієнтів.
контрольная работа [511,4 K], добавлен 18.07.2010Основні етапи розв'язування алгебраїчних рівнянь: аналіз задачі, пошук плану розв'язування та його здійснення; перевірка та розгляд інших способів виконання. Раціоналізація розв'язування алгебраїчних рівнянь вищих степенів методом заміни змінних.
курсовая работа [229,8 K], добавлен 13.05.2013Поняття диференціальних рівнянь. Задача Коші і крайова задача. Класифікація методів для задачі Коші. Похибка методу Ейлера. Модифікований метод Ейлера-Коші. Пошук рішення задачі однокроковим методом Ейлера. Порівняння чисельного рішення з точним рішенням.
презентация [294,4 K], добавлен 06.02.2014