Поверхностные интегралы
Примеры вычислений поверхностного интеграла. Использование формул Остроградского-Гаусса и Стокса для вычисления площади поверхности и координат центра масс, моментов инерции материальных поверхностей с поверхностной плотностью распределения массы.
Рубрика | Математика |
Вид | презентация |
Язык | русский |
Дата добавления | 29.03.2021 |
Размер файла | 513,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Рассмотрение задач численного интегрирования по простейшим формулам. Понятие тройных интегралов и их применение для вычисления объема, массы, площади, моментов инерции, статистических моментов и координат центра масс тела на конкретных примерах.
курсовая работа [348,5 K], добавлен 17.12.2013Поверхностный интеграл как интеграл от функции, заданной какой-либо поверхности. Сущность и понятие поверхностного интеграла первого и второго рода, взаимосвязь между ними и вычисление. Формулы Остроградского и Стокса, их доказательство и применение.
курсовая работа [321,7 K], добавлен 09.10.2011Изучение теории кратных интегралов. Исследование понятия "двойной и тройной интеграл". Применение кратных интегралов для вычисления объема, массы, площади, моментов инерции, статистических моментов и координат центра масс тела на конкретных примерах.
курсовая работа [469,0 K], добавлен 13.12.2012Криволинейные и поверхностные интегралы. Криволинейный интеграл I и ІІ рода. Поверхностный интеграл I и ІІ рода. Формулы Грина, Остроградского-Гаусса, Стокса. Основные понятия теории поля. Скалярное поле. Производная скалярного поля по направлению.
курсовая работа [1,2 M], добавлен 09.12.2008Понятие двойного и тройного интеграла. Кратные интегралы в криволинейных координатах. Геометрические и физические приложения кратных интегралов. Криволинейные и поверхностные интегралы: понятия и способы вычисления. Геометрические и физические приложения.
дипломная работа [237,7 K], добавлен 27.02.2009Рассмотрение основ векторных полей, физического смысла дивергенции и ротора. Ознакомление с криволинейными и поверхностными интегралами и методами их вычисления. Изучение основных положений теорем Гаусса-Остроградского и Стокса; примеры решения задач.
реферат [1,5 M], добавлен 24.03.2014Понятие двойного интеграла по плоской области. Конечный предел интегральной суммы при стремлении к 0. Способы разбиения поверхности и выбора точек. Свойства поверхностных интегралов. Интегрирование по поверхности. Непрерывная функция на поверхности.
презентация [45,9 K], добавлен 17.09.2013Определение понятия поверхностного интеграла первого и второго рода, их основные свойств, примеры вычисления и его перевода в обыкновенный двойной. Рассмотрение потока векторного поля через поверхность, как механического смысла поверхностного интеграла.
контрольная работа [157,6 K], добавлен 24.01.2011Понятие определенного, двойного, тройного, криволинейного и поверхностного интегралов. Предел интегральной суммы. Вычисление двойного интеграла. Кратные интегралы в криволинейных координатах. Формулы перехода от цилиндрических координат к декартовым.
курсовая работа [241,3 K], добавлен 13.11.2011Вычисление площади фигуры, ограниченной заданными линиями, с помощью двойного интеграла. Расчет двойного интеграла, перейдя к полярным координатам. Методика определения криволинейного интеграла второго рода вдоль заданной линии и потока векторного поля.
контрольная работа [392,3 K], добавлен 14.12.2012Общая схема применения определенного интеграла, правила и принципы реализации данного процесса. Вычисления координат центра тяжести плоских фигур. Решения задач на вычисление силы взаимодействия двух материальных тел, вращающихся вокруг неподвижной оси.
методичка [195,5 K], добавлен 15.06.2015Поверхностный интеграл второго рода, вычисление поверхности. Теорема Остроградского-Гаусса. Дивергенция, векторное поле скоростей. Поток вектора через замкнутую поверхность, направления внешней нормали. Поверхность произвольных частей.
реферат [354,0 K], добавлен 23.02.2011Определение центра тяжести сечения. Вычисление, при каком значении момента Х угол поворота правого концевого сечения вала равно нулю, построение эпюры крутящих моментов. Расчет значений осевых и центробежных моментов инерции, построение схемы сечения.
контрольная работа [105,0 K], добавлен 06.08.2010Использование численных методов, позволяющих найти приближенное значение определенного интеграла с заданной точностью. Анализ формул трапеции и параболы (Симпсона). Основной принцип построения формул приближенного вычисления определенного интеграла.
презентация [96,6 K], добавлен 18.09.2013Математическое объяснение понятия и свойств скалярного поля. Формулы расчета нормали к поверхности. Вычисление потока векторного поля через прямой круговой цилиндр с заданным радиусом основания. Доказательство теорем Остроградского-Гаусса и Стокса.
реферат [264,0 K], добавлен 11.02.2011Специальные векторные поля. Теорема Стокса. Потенциальное, соленоидальное поле. Теорема Остроградского-Гаусса. Поток и определение вектора, направленного в отрицательную сторону оси. Дивергенция, свойства и интенсивностью векторной трубки.
реферат [369,7 K], добавлен 23.02.2011Нахождение длины сторон и площади треугольника, координат центра тяжести пирамиды, центра масс тетраэдра. Составление уравнений геометрического места точек, высоты, медианы, биссектрисы внутреннего угла, окружности. Построение системы линейных неравенств.
контрольная работа [1,2 M], добавлен 13.12.2012Специфика декартовых координат и способ их использования при вычислении двойного интеграла, сведенного к повторному интегрированию. Примеры решения задач и особенности определения тройного интеграла в системе цилиндрических и сферических координат.
презентация [69,7 K], добавлен 17.09.2013Обзор квадратурных формул Гаусса, их определение, интегральные конструкции, примеры, четко описывающие квадратуры Гаусса. Особенности использования некоторых алгоритмов, позволяющих отследить ход решений задач, использующих квадратурные формулы Гаусса.
контрольная работа [309,6 K], добавлен 16.12.2015Понятие определённого интеграла, расчет площади, объёма тела и длины дуги, статического момента и центра тяжести кривой. Вычисление площади в случае прямоугольной криволинейной области. Применение криволинейного, поверхностного и тройного интегралов.
курсовая работа [2,1 M], добавлен 19.05.2011