Поверхности второго порядка
Определение поверхностей второго порядка. Каноническое уравнение эллипсоида, однополостного гиперболоида, двуполостного гиперболоида, эллиптического параболоида, гиперболического параболоида. Геометрический вид и сечение поверхностей второго порядка.
Рубрика | Математика |
Вид | реферат |
Язык | русский |
Дата добавления | 18.12.2010 |
Размер файла | 50,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru
Реферат
Поверхности второго порядка
Поверхности второго порядка - это поверхности, которые в прямоугольной системе координат определяются алгебраическими уравнениями второй степени.
Эллипсоид
Эллипсоидом называется поверхность, которая в некоторой прямоугольной системе координат определяется уравнением:
Уравнение (1) называется каноническим уравнением эллипсоида.
Установим геометрический вид эллипсоида. Для этого рассмотрим сечения данного эллипсоида плоскостями, параллельными плоскости Oxy. Каждая из таких плоскостей определяется уравнением вида z=h, где h - любое число, а линия, которая получается в сечении, определяется двумя уравнениями
(2)
Исследуем уравнения (2) при различных значениях h.
Если > c (c>0), то и уравнения (2) определяют мнимый эллипс, т. е. точек пересечения плоскости z=h с данным эллипсоидом не существует.
Если , то и линия (2) вырождается в точки (0; 0; + c) и (0; 0; - c) (плоскости касаются эллипсоида).
Если , то уравнения (2) можно представить в виде
откуда следует, что плоскость z=h пересекает эллипсоид по эллипсу с полуосями и . При уменьшении значения и увеличиваются и достигают своих наибольших значений при , т. е. в сечении эллипсоида координатной плоскостью Oxy получается самый большой эллипс с полуосями и .
Аналогичная картина получается и при пересечении данной поверхности плоскостями, параллельными координатным плоскостям Oxz и Oyz.
Таким образом, рассмотренные сечения позволяют изобразить эллипсоид как замкнутую овальную поверхность (рис. 156). Величины a, b, c называются полуосями эллипсоида. В случае a=b=c эллипсоид является сферой.
2. Однополосный гиперболоид
Однополосным гиперболоидом называется поверхность, которая в некоторой прямоугольной системе координат определяется уравнением
(3)
Уравнение (3) называется каноническим уравнением однополосного гиперболоида.
Установим вид поверхности (3). Для этого рассмотрим сечение ее координатными плоскостями Oxy (y=0) и Oyx (x=0). Получаем соответственно уравнения
и
из которых следует, что в сечениях получаются гиперболы.
Теперь рассмотрим сечения данного гиперболоида плоскостями z=h, параллельными координатной плоскости Oxy. Линия, получающаяся в сечении, определяется уравнениями
или (4)
из которых следует, что плоскость z=h пересекает гиперболоид по эллипсу с полуосями и , достигающими своих наименьших значений при h=0, т.е. в сечении данного гиперболоида координатной осью Oxy получается самый маленький эллипс с полуосями a*=a и b*=b. При бесконечном возрастании величины a* и b* возрастают бесконечно.
Таким образом, рассмотренные сечения позволяют изобразить однополосный гиперболоид в виде бесконечной трубки, бесконечно расширяющейся по мере удаления (по обе стороны) от плоскости Oxy.
Величины a, b, c называются полуосями однополосного гиперболоида.
Двуполостный гиперболоид
Двуполостным гиперболоидом называется поверхность, которая в некоторой прямоугольной системе координат определяется уравнением
(5)
Уравнение (5) называется каноническим уравнением двуполостного гиперболоида.
Установим геометрический вид поверхности (5). Для этого рассмотрим его сечения координатными плоскостями Oxy и Oyz. Получаем соответственно уравнения
и
из которых следует, что в сечениях получаются гиперболы.
Теперь рассмотрим сечения данного гиперболоида плоскостями z=h, параллельными координатной плоскости Oxy. Линия, полученная в сечении, определяется уравнениями
или (6)
из которых следует, что при >c (c>0) плоскость z=h пересекает гиперболоид по эллипсу с полуосями и . При увеличении величины a* и b* тоже увеличиваются.
При уравнениям (6) удовлетворяют координаты только двух точек: (0;0;+с) и (0;0;-с) (плоскости касаются данной поверхности).
При уравнения (6) определяют мнимый эллипс, т.е. точек пересечения плоскости z=h с данным гиперболоидом не существует.
Величина a, b и c называются полуосями двуполостного гиперболоида.
Эллиптический параболоид
Эллиптическим параболоидом называется поверхность, которая в некоторой прямоугольной системе координат определяется уравнением
(7)
где p>0 и q>0.
Уравнение (7) называется каноническим уравнением эллиптического параболоида.
Рассмотрим сечения данной поверхности координатными плоскостями Oxy и Oyz. Получаем соответственно уравнения
и
из которых следует, что в сечениях получаются параболы, симметричные относительно оси Oz, с вершинами в начале координат.
Теперь рассмотрим сечения данного параболоида плоскостями z=h, параллельными координатной плоскости Oxy. Линия, получающаяся в сечении, определяется уравнениями
или (8)
из которых следует, что при плоскость z=h пересекает эллиптический параболоид по эллипсу с полуосями и . При увеличении h величины a и b тоже увеличиваются; при h=0 эллипс вырождается в точку (плоскость z=0 касается данного гиперболоида). При h<0 уравнения (8) определяют мнимый эллипс, т.е. точек пересечения плоскости z=h с данным гиперболоидом нет.
Таким образом, рассмотренные сечения позволяют изобразить эллиптический параболоид в виде бесконечно выпуклой чаши.
Точка (0;0;0) называется вершиной параболоида; числа p и q - его параметрами.
В случае p=q уравнение (8) определяет окружность с центром на оси Oz, т.е. эллиптический параболоид можно рассматривать как поверхность, образованную вращением параболы вокруг её оси (параболоид вращения).
Гиперболический параболоид
Гиперболическим параболоидом называется поверхность, которая в некоторой прямоугольной системе координат, определяется уравнением
(9)
где p>0, q>0.
Уравнение (9) называется каноническим уравнением гиперболического параболоида.
Рассмотрим сечение параболоида плоскостью Oxz (y=0). Получаем уравнение
(10)
из которых следует, что в сечении получается парабола, направленная вверх, симметричная относительно оси Oz, с вершиной в начале координат. В сечениях поверхности плоскостями, параллельными плоскости Oxz (y=h), получаются так же направленные вверх параболы.
рассмотрим сечение данного параболоида плоскостью Oyz (x=0).
Получаем уравнение
из которых следует, что и в этом случае в сечении получается парабола, но теперь направленная вниз, симметричная относительно оси Oz, с вершиной в начале координат. Рассмотрев сечения параболоида плоскостями, параллельными плоскости Oyz (x=h), получим уравнения
из которых следует, что при любом h в сечении получается парабола, направленная вниз, а вершина её лежит на параболе, определённой уравнениями (10).
Рассмотрим сечения параболоида плоскостями z=h, параллельными плоскости Oxy . получим уравнения
или
из которых следует, что при h>0 в сечении получаются гиперболы, пересекающие плоскость Oxy; при h<0 - гиперболы, пересекающие плоскости Oyz; при h=0 - гипербола вырождается в пару пересекающихся прямых
и
точка (0;0;0) называется вершиной параболоида; числа p и q - его параметрами.
6. Конус второго порядка
Конусом второго порядка называется поверхность, которая в некоторой прямоугольной системе координат определяется уравнением
(11)
Рассмотрим геометрические свойства конуса. В сечение этой поверхности плоскостью Oxy (y=0) получаем линию
распадающуюся на две пересекающиеся прямые
и
Аналогично, в сечении конуса плоскостью Oyz (x=0) также получаются две пересекающиеся прямые
и
Рассмотрим сечения поверхности плоскостями z=h, параллельными плоскости Oxy. Получим
или
из которых следует, что при h>0 и h<0 в сечениях получаются эллипсы с полуосями . При увеличении абсолютной величины h полуоси a* и b* также увеличиваются.
При h=0 линия пересечения поверхности с плоскостью z=h вырождается в точку (0;0;0).
Cписок использованной литературы:
поверхность второй порядок уравнение
1. Шипачёв В.С.:”Высшая математика”
Размещено на Allbest.ru
Подобные документы
Поверхности второго порядка аналитической геометрии. Свойства гиперболического параболоида, порядок разыскания его прямолинейных образующих. Пример решения уравнения прямолинейных образующих для заданной поверхности гиперболического параболоида.
курсовая работа [2,5 M], добавлен 26.05.2019Кривая и формы поверхности второго порядка. Анализ свойств кривых и поверхностей второго порядка. Исследование форм поверхности методом сечений плоскостями, построение линии, полученной в сечениях. Построение поверхности в канонической системе координат.
курсовая работа [132,8 K], добавлен 28.06.2009Исследование кривой второго порядка. Определение типа кривой с помощью инвариантов. Приведение к каноническому виду, построение графиков. Исследование поверхности второго порядка. Определение типа поверхности. Анализ формы поверхности методом сечений.
курсовая работа [231,0 K], добавлен 28.06.2009Исследование общего уравнения линии второго порядка и приведение его к простейшим (каноническим) формам. Инвариантность выражения АС-В2. Классификация линий второго порядка. Уравнения, определяющие эллипс и гиперболу. Директрисы кривых второго порядка.
курсовая работа [132,1 K], добавлен 14.10.2011Метод планирования второго порядка на примере В3-плана. Получение и исследование математической модели объекта в виде полинома второго порядка. Статистический анализ полученного уравнения и построение поверхностей отклика. Расчет коэффициентов регрессии.
курсовая работа [128,4 K], добавлен 18.11.2010Доказательство теоремы единственности для кривых второго порядка. Преимущества и недостатки разных способов доказательства теоремы единственности. Пучок кривых второго порядка. Методы решения теоремы единственности для поверхностей второго порядка.
курсовая работа [302,7 K], добавлен 22.01.2011Уравнение для описания поверхности второго порядка в аффинной системе координат. Виды квадрики в прямоугольной системе координат: мнимый эллипсоид, гиперболоид, конус, параболоид, цилиндр, плоскости. Способы приведения квадрики к каноническому виду.
курсовая работа [4,5 M], добавлен 19.09.2012Основные свойства кривых второго порядка. Построение кривой в канонической и общей системах координат. Переход уравнения поверхности второго порядка к каноническому виду. Исследование формы поверхности методом сечений и построение полученных сечений.
курсовая работа [166,1 K], добавлен 17.05.2011Линейные операторы, собственные значения. Общее понятие о квадратичных формах. Упрощение уравнений второго порядка на плоскости. Упрощение уравнений фигур в пространстве. Ортогональное преобразование, приводящее квадратичную форму к каноническому виду.
курсовая работа [162,9 K], добавлен 13.11.2012Роль идей и методов проективной геометрии в математической науке. Закономерности кривых второго порядка и кривых второго класса, основные теоремы Паскаля и Брианшона, описывающие замечательное свойство шестиугольника вписанного в кривую второго порядка.
курсовая работа [1,9 M], добавлен 04.11.2013