Поверхности второго порядка

Определение поверхностей второго порядка. Каноническое уравнение эллипсоида, однополостного гиперболоида, двуполостного гиперболоида, эллиптического параболоида, гиперболического параболоида. Геометрический вид и сечение поверхностей второго порядка.

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 18.12.2010
Размер файла 50,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Реферат

Поверхности второго порядка

Поверхности второго порядка - это поверхности, которые в прямоугольной системе координат определяются алгебраическими уравнениями второй степени.

Эллипсоид

Эллипсоидом называется поверхность, которая в некоторой прямоугольной системе координат определяется уравнением:

Уравнение (1) называется каноническим уравнением эллипсоида.

Установим геометрический вид эллипсоида. Для этого рассмотрим сечения данного эллипсоида плоскостями, параллельными плоскости Oxy. Каждая из таких плоскостей определяется уравнением вида z=h, где h - любое число, а линия, которая получается в сечении, определяется двумя уравнениями

(2)

Исследуем уравнения (2) при различных значениях h.

Если > c (c>0), то и уравнения (2) определяют мнимый эллипс, т. е. точек пересечения плоскости z=h с данным эллипсоидом не существует.

Если , то и линия (2) вырождается в точки (0; 0; + c) и (0; 0; - c) (плоскости касаются эллипсоида).

Если , то уравнения (2) можно представить в виде

откуда следует, что плоскость z=h пересекает эллипсоид по эллипсу с полуосями и . При уменьшении значения и увеличиваются и достигают своих наибольших значений при , т. е. в сечении эллипсоида координатной плоскостью Oxy получается самый большой эллипс с полуосями и .

Аналогичная картина получается и при пересечении данной поверхности плоскостями, параллельными координатным плоскостям Oxz и Oyz.

Таким образом, рассмотренные сечения позволяют изобразить эллипсоид как замкнутую овальную поверхность (рис. 156). Величины a, b, c называются полуосями эллипсоида. В случае a=b=c эллипсоид является сферой.

2. Однополосный гиперболоид

Однополосным гиперболоидом называется поверхность, которая в некоторой прямоугольной системе координат определяется уравнением

(3)

Уравнение (3) называется каноническим уравнением однополосного гиперболоида.

Установим вид поверхности (3). Для этого рассмотрим сечение ее координатными плоскостями Oxy (y=0) и Oyx (x=0). Получаем соответственно уравнения

и

из которых следует, что в сечениях получаются гиперболы.

Теперь рассмотрим сечения данного гиперболоида плоскостями z=h, параллельными координатной плоскости Oxy. Линия, получающаяся в сечении, определяется уравнениями

или (4)

из которых следует, что плоскость z=h пересекает гиперболоид по эллипсу с полуосями и , достигающими своих наименьших значений при h=0, т.е. в сечении данного гиперболоида координатной осью Oxy получается самый маленький эллипс с полуосями a*=a и b*=b. При бесконечном возрастании величины a* и b* возрастают бесконечно.

Таким образом, рассмотренные сечения позволяют изобразить однополосный гиперболоид в виде бесконечной трубки, бесконечно расширяющейся по мере удаления (по обе стороны) от плоскости Oxy.

Величины a, b, c называются полуосями однополосного гиперболоида.

Двуполостный гиперболоид

Двуполостным гиперболоидом называется поверхность, которая в некоторой прямоугольной системе координат определяется уравнением

(5)

Уравнение (5) называется каноническим уравнением двуполостного гиперболоида.

Установим геометрический вид поверхности (5). Для этого рассмотрим его сечения координатными плоскостями Oxy и Oyz. Получаем соответственно уравнения

и

из которых следует, что в сечениях получаются гиперболы.

Теперь рассмотрим сечения данного гиперболоида плоскостями z=h, параллельными координатной плоскости Oxy. Линия, полученная в сечении, определяется уравнениями

или (6)

из которых следует, что при >c (c>0) плоскость z=h пересекает гиперболоид по эллипсу с полуосями и . При увеличении величины a* и b* тоже увеличиваются.

При уравнениям (6) удовлетворяют координаты только двух точек: (0;0;+с) и (0;0;-с) (плоскости касаются данной поверхности).

При уравнения (6) определяют мнимый эллипс, т.е. точек пересечения плоскости z=h с данным гиперболоидом не существует.

Величина a, b и c называются полуосями двуполостного гиперболоида.

Эллиптический параболоид

Эллиптическим параболоидом называется поверхность, которая в некоторой прямоугольной системе координат определяется уравнением

(7)

где p>0 и q>0.

Уравнение (7) называется каноническим уравнением эллиптического параболоида.

Рассмотрим сечения данной поверхности координатными плоскостями Oxy и Oyz. Получаем соответственно уравнения

и

из которых следует, что в сечениях получаются параболы, симметричные относительно оси Oz, с вершинами в начале координат.

Теперь рассмотрим сечения данного параболоида плоскостями z=h, параллельными координатной плоскости Oxy. Линия, получающаяся в сечении, определяется уравнениями

или (8)

из которых следует, что при плоскость z=h пересекает эллиптический параболоид по эллипсу с полуосями и . При увеличении h величины a и b тоже увеличиваются; при h=0 эллипс вырождается в точку (плоскость z=0 касается данного гиперболоида). При h<0 уравнения (8) определяют мнимый эллипс, т.е. точек пересечения плоскости z=h с данным гиперболоидом нет.

Таким образом, рассмотренные сечения позволяют изобразить эллиптический параболоид в виде бесконечно выпуклой чаши.

Точка (0;0;0) называется вершиной параболоида; числа p и q - его параметрами.

В случае p=q уравнение (8) определяет окружность с центром на оси Oz, т.е. эллиптический параболоид можно рассматривать как поверхность, образованную вращением параболы вокруг её оси (параболоид вращения).

Гиперболический параболоид

Гиперболическим параболоидом называется поверхность, которая в некоторой прямоугольной системе координат, определяется уравнением

(9)

где p>0, q>0.

Уравнение (9) называется каноническим уравнением гиперболического параболоида.

Рассмотрим сечение параболоида плоскостью Oxz (y=0). Получаем уравнение

(10)

из которых следует, что в сечении получается парабола, направленная вверх, симметричная относительно оси Oz, с вершиной в начале координат. В сечениях поверхности плоскостями, параллельными плоскости Oxz (y=h), получаются так же направленные вверх параболы.

рассмотрим сечение данного параболоида плоскостью Oyz (x=0).

Получаем уравнение

из которых следует, что и в этом случае в сечении получается парабола, но теперь направленная вниз, симметричная относительно оси Oz, с вершиной в начале координат. Рассмотрев сечения параболоида плоскостями, параллельными плоскости Oyz (x=h), получим уравнения

из которых следует, что при любом h в сечении получается парабола, направленная вниз, а вершина её лежит на параболе, определённой уравнениями (10).

Рассмотрим сечения параболоида плоскостями z=h, параллельными плоскости Oxy . получим уравнения

или

из которых следует, что при h>0 в сечении получаются гиперболы, пересекающие плоскость Oxy; при h<0 - гиперболы, пересекающие плоскости Oyz; при h=0 - гипербола вырождается в пару пересекающихся прямых

и

точка (0;0;0) называется вершиной параболоида; числа p и q - его параметрами.

6. Конус второго порядка

Конусом второго порядка называется поверхность, которая в некоторой прямоугольной системе координат определяется уравнением

(11)

Рассмотрим геометрические свойства конуса. В сечение этой поверхности плоскостью Oxy (y=0) получаем линию

распадающуюся на две пересекающиеся прямые

и

Аналогично, в сечении конуса плоскостью Oyz (x=0) также получаются две пересекающиеся прямые

и

Рассмотрим сечения поверхности плоскостями z=h, параллельными плоскости Oxy. Получим

или

из которых следует, что при h>0 и h<0 в сечениях получаются эллипсы с полуосями . При увеличении абсолютной величины h полуоси a* и b* также увеличиваются.

При h=0 линия пересечения поверхности с плоскостью z=h вырождается в точку (0;0;0).

Cписок использованной литературы:

поверхность второй порядок уравнение

1. Шипачёв В.С.:”Высшая математика”

Размещено на Allbest.ru


Подобные документы

  • Поверхности второго порядка аналитической геометрии. Свойства гиперболического параболоида, порядок разыскания его прямолинейных образующих. Пример решения уравнения прямолинейных образующих для заданной поверхности гиперболического параболоида.

    курсовая работа [2,5 M], добавлен 26.05.2019

  • Кривая и формы поверхности второго порядка. Анализ свойств кривых и поверхностей второго порядка. Исследование форм поверхности методом сечений плоскостями, построение линии, полученной в сечениях. Построение поверхности в канонической системе координат.

    курсовая работа [132,8 K], добавлен 28.06.2009

  • Исследование кривой второго порядка. Определение типа кривой с помощью инвариантов. Приведение к каноническому виду, построение графиков. Исследование поверхности второго порядка. Определение типа поверхности. Анализ формы поверхности методом сечений.

    курсовая работа [231,0 K], добавлен 28.06.2009

  • Исследование общего уравнения линии второго порядка и приведение его к простейшим (каноническим) формам. Инвариантность выражения АС-В2. Классификация линий второго порядка. Уравнения, определяющие эллипс и гиперболу. Директрисы кривых второго порядка.

    курсовая работа [132,1 K], добавлен 14.10.2011

  • Метод планирования второго порядка на примере В3-плана. Получение и исследование математической модели объекта в виде полинома второго порядка. Статистический анализ полученного уравнения и построение поверхностей отклика. Расчет коэффициентов регрессии.

    курсовая работа [128,4 K], добавлен 18.11.2010

  • Доказательство теоремы единственности для кривых второго порядка. Преимущества и недостатки разных способов доказательства теоремы единственности. Пучок кривых второго порядка. Методы решения теоремы единственности для поверхностей второго порядка.

    курсовая работа [302,7 K], добавлен 22.01.2011

  • Уравнение для описания поверхности второго порядка в аффинной системе координат. Виды квадрики в прямоугольной системе координат: мнимый эллипсоид, гиперболоид, конус, параболоид, цилиндр, плоскости. Способы приведения квадрики к каноническому виду.

    курсовая работа [4,5 M], добавлен 19.09.2012

  • Основные свойства кривых второго порядка. Построение кривой в канонической и общей системах координат. Переход уравнения поверхности второго порядка к каноническому виду. Исследование формы поверхности методом сечений и построение полученных сечений.

    курсовая работа [166,1 K], добавлен 17.05.2011

  • Линейные операторы, собственные значения. Общее понятие о квадратичных формах. Упрощение уравнений второго порядка на плоскости. Упрощение уравнений фигур в пространстве. Ортогональное преобразование, приводящее квадратичную форму к каноническому виду.

    курсовая работа [162,9 K], добавлен 13.11.2012

  • Роль идей и методов проективной геометрии в математической науке. Закономерности кривых второго порядка и кривых второго класса, основные теоремы Паскаля и Брианшона, описывающие замечательное свойство шестиугольника вписанного в кривую второго порядка.

    курсовая работа [1,9 M], добавлен 04.11.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.