История развития чисел и счета
Появление первых арифметических и геометрических понятий. Возникновение и основные этапы эволюции счета: выработка эталона-множества символизирующего некое конкретное число (где, впервые возникает понятие числа); выработка наиболее удобных счетных систем.
Рубрика | Математика |
Предмет | Теория и методика формирования элементарных математических представлений |
Вид | реферат |
Язык | русский |
Прислал(а) | Мария |
Дата добавления | 11.10.2011 |
Размер файла | 39,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Как люди научились считать, возникновение цифр, чисел и систем счисления. Таблица умножения на "пальцах": методика умножения для чисел 9 и 8. Примеры быстрого счета. Способы умножения двузначного числа на 11, 111, 1111 и т.д. и трехзначного числа на 999.
курсовая работа [66,8 K], добавлен 22.10.2011Понятие множества, его обозначения. Операции объединения, пересечения и дополнения множеств. Свойства счетных множеств. История развития представлений о числе, появление множества натуральных, рациональных и действительных чисел, операции с ними.
курсовая работа [358,3 K], добавлен 07.12.2012Появление отрицательных чисел. Понятие мнимых и комплексных чисел. Формула Эйлера, связывающая показательную функцию с тригонометрической. Изображение комплексного числа на координатной плоскости. "Гиперкомплексные" числа Гамильтона ("кватернионы").
презентация [435,9 K], добавлен 16.12.2011Краткий биографический очерк жизни и деятельности Георга Кантора и Шарля Мерэ. История создания теории действительного числа, ее математическая сущность и характеристика. Определение отношения порядка. Понятие замкнутости множества вещественных чисел.
презентация [473,7 K], добавлен 11.06.2011Содержание математики как системы математических моделей и инструментов для их создания. Возникновение "теории идей". Натуральные числа, множество целых чисел, рациональное число, вещественное или действительное число. Существующая теория чисел.
реферат [81,7 K], добавлен 13.01.2011Первоначальные элементы математики. Свойства натуральных чисел. Понятие теории чисел. Общие свойства сравнений и алгебраических уравнений. Арифметические действия со сравнениями. Основные законы арифметики. Проверка результатов арифметических действий.
курсовая работа [200,4 K], добавлен 15.05.2015Первое доказательство существования иррациональных чисел. Развитие теории пропорций Евдоксом Книдским. Теоремы, корень из 2 - иррациональное число. Трансцендентное число: сущность понятия, свойства, примеры, история. История уточнения числа пи.
контрольная работа [53,9 K], добавлен 27.11.2011Изучение процесса появления действительных чисел, которые стали основой арифметики, а также способствовали возникновению рациональных и иррациональных чисел. Арифметика в трудах мыслителей Древней Греции. И. Ньютон и определение действительного числа.
реферат [16,4 K], добавлен 15.10.2013Свойства делимости целых чисел в алгебре. Особенности деления с остатком. Основные свойства простых и составных чисел. Признаки делимости на ряд чисел. Понятия и способы вычисления наибольшего общего делителя (НОД) и наименьшего общего кратного (НОК).
лекция [268,6 K], добавлен 07.05.2013История отрицательных чисел: их отрицание в Древнем Египте, Вавилоне, Греции, узаконивание в Китае и Индии. Математические действия с ними. Подходы к определению положению нуля как натурального числа. Изучение отрицательных чисел в школьной программе.
презентация [178,6 K], добавлен 13.05.2011