Итерационные методы решения СЛАУ

Приближенные методы решения систем линейных уравнений. Эффективность применения приближенных методов. Метод итераций в системе с n линейных уравнений с n неизвестными. Решение СЛАУ высокого порядка методом Ланцоша. Проблема выбора начального приближения.

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 16.03.2012
Размер файла 32,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Итерационные методы решения СЛАУ

Метод итераций (метод последовательных приближений).

Приближенные методы решения систем линейных уравнений позволяют получать значения корней системы с заданной точностью в виде предела последовательности некоторых векторов. Процесс построения такой последовательности называется итерационным (повторяющимся).

Эффективность применения приближенных методов зависят от выбора начального вектора и быстроты сходимости процесса.

Рассмотрим метод итераций (метод последовательных приближений). Пусть дана система n линейных уравнений с n неизвестными:

Ах=b,

Предполагая, что диагональные элементы aii 0 (i = 2,…, n), выразим xi через первое уравнение систем x2 - через второе уравнение и т.д. В результате получим систему, эквивалентную системе (14):

Обозначим ; , где i == 1, 2,…, n; j == 1,2,…, n. Тогда система (15) запишется таким образом в матричной форме

Решим систему (16) методом последовательных приближений. За нулевое приближение примем столбец свободных членов. Любое (k+1) - е приближение вычисляют по формуле

Если последовательность приближений x(0),…, x(k) имеет предел , то этот предел является решением системы (15), поскольку в силу свойства предела , т.е. .

Метод Зейделя.

Метод Зейделя представляет собой модификацию метода последовательных приближений. В методе Зейделя при вычислении (k+1) - го приближения неизвестного xi (i>1) учитываются уже найденные ранее (k+1) - е приближения неизвестных xi-1.

Пусть дана линейная система, приведенная к нормальному виду:

Выбираем произвольно начальные приближения неизвестных и подставляем в первое уравнение системы. Полученное первое приближение подставляем во второе уравнение системы и так далее до последнего уравнения. Аналогично строим вторые, третьи и т.д. итерации.

Таким образом, предполагая, что k-е приближения известны, методом Зейделя строим (k+1) - е приближение по следующим формулам:

где k=0,1,…, n

Метод Ланцоша.

Для решения СЛАУ высокого порядка, матрица, коэффициентов которой хранится в компактном нижеописанном виде, наиболее удобным итерационным методом является метод Ланцоша, схема которого имеет вид:

где

Преимуществом данного метода является его высокая скорость сходимости к точному решению. Кроме того, доказано, что он обладает свойством «квадратичного окончания», т.е. для положительно определенной матрицы можно гарантировано получить точное решение при количестве итераций . Размер требуемой памяти на каждой итерации не изменяется, т.к. не требует преобразование матрицы . В качестве критерия остановки данного итерационного процесса обычно используют соотношение

,

где - заданная точность. В качестве другого критерия сходимости иногда удобнее использовать среднеквадратичную разность между решениями, полученными на соседних итерациях:

линейный уравнение ланцош приближенный

Среднеквадратичную разность необходимо контролировать при выполнении каждых k наперед заданных итераций.

Отдельно следует рассмотреть проблему выбора начального приближения . Доказывается, что при положительно определенной матрице , итерационный процесс всегда сходится при любом выборе начального приближения. При решении контактных задач, когда для уточнения граничных условий в зоне предполагаемого контакта требуется большое количество решений СЛАУ вида, в качестве начального приближения для первого расчета используется правая часть системы, а для каждого последующего пересчета - решение, полученное на предыдущем. Такая схема позволяет значительно сократить количество итераций, необходимых для достижения заданной точности.

Список литературы

Зенкевич О., Морган К. Конечные методы и аппроксимация // М.: Мир, 1980

Зенкевич О., Метод конечных элементов // М.: Мир, 1975

Стрэнг Г., Фикс Дж. Теория метода конечных элементов // М.: Мир, 1977

Бахвалов Н.С., Жидков Н.П., Кобельков Г.М. Численные методы // М.: наука, 1987

Воеводин В.В., Кузнецов Ю.А. Матрицы и вычисления // М.: Наука, 1984

Бахвалов Н.С. Численные методы // М.: Наука, 1975

Годунов С.К. Решение систем линейных уравнений // Новосибирск: Наука, 1980

Размещено на Allbest.ru


Подобные документы

  • Методы решения систем линейных алгебраических уравнений (СЛАУ): Гаусса и Холецкого, их применение к конкретной задаче. Код программы решения перечисленных методов на языке программирования Borland C++ Builder 6. Понятие точного метода решения СЛАУ.

    реферат [58,5 K], добавлен 24.11.2009

  • Характеристика способов решения систем линейных алгебраических уравнений (СЛАУ). Описание проведения вычислений на компьютере методом Гаусса, методом квадратного корня, LU–методом. Реализация метода вращений средствами системы программирования Delphi.

    курсовая работа [118,4 K], добавлен 04.05.2014

  • Понятие и специфические черты системы линейных алгебраических уравнений. Механизм и этапы решения системы линейных алгебраических уравнений. Сущность метода исключения Гаусса, примеры решения СЛАУ данным методом. Преимущества и недостатки метода Гаусса.

    контрольная работа [397,2 K], добавлен 13.12.2010

  • Методы решения систем линейных уравнений. Метод Якоби в матричной записи. Достоинство итерационного метода верхних релаксаций, вычислительные погрешности. Метод блочной релаксации. Разбор метода релаксаций в системах линейных уравнений на примере.

    курсовая работа [209,1 K], добавлен 27.04.2011

  • Сущность итерационного метода решения задачи, оценка его главных преимуществ и недостатков. Разновидности итерационных методов решения систем линейных алгебраических уравнений: Якоби, Хорецкого и верхней релаксации, их отличия и возможности применения.

    курсовая работа [39,2 K], добавлен 01.12.2009

  • Решение нелинейных уравнений. Отделения корней уравнения графически. Метод хорд и Ньютона. Система линейных уравнений, прямые и итерационные методы решения. Нормы векторов и матриц. Метод простых итераций, его модификация. Понятие про критерий Сильвестра.

    курсовая работа [911,6 K], добавлен 15.08.2012

  • Методика преобразования вращения и ее значение в решении алгебраических систем уравнений. Получение результирующей матрицы. Ортогональные преобразования отражением. Итерационные методы с минимизацией невязки. Решение методом сопряженных направлений.

    реферат [116,3 K], добавлен 14.08.2009

  • Метод последовательного исключения неизвестных (метод Гаусса) при решении задач аппроксимации функции в прикладной математике. Метод Гаусса с выбором главного элемента и оценка погрешности при решении системы линейных уравнений, итерационные методы.

    контрольная работа [94,4 K], добавлен 04.09.2010

  • Общий вид системы линейных уравнений и ее основные понятия. Правило Крамера и особенности его применения в системе уравнений. Метод Гаусса решения общей системы линейных уравнений. Использование критерия совместности общей системы линейных уравнений.

    контрольная работа [35,1 K], добавлен 24.06.2009

  • Изучение основ линейных алгебраических уравнений. Нахождение решения систем данных уравнений методом Гаусса с выбором ведущего элемента в строке, в столбце и в матрице. Выведение исходной матрицы. Основные правила применения метода факторизации.

    лабораторная работа [489,3 K], добавлен 28.10.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.