История создания теории относительности
Формулировка исходных идей теории относительности в период, предшествующий ее созданию. Ценные идеи крупнейшего мыслителя английского математика Эдмунда Уиттекера. Основные положения, необходимые для аксиоматического построения релятивистской теории.
Рубрика | Математика |
Предмет | Математика |
Вид | доклад |
Язык | русский |
Прислал(а) | Остропико Е. |
Дата добавления | 01.05.2012 |
Размер файла | 54,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Роль математики в современном мире. Основные этапы развития математики. Аксиоматический метод построения научной теории. Начала Евклида как образец аксиоматического построения научной теории. История создания неевклидовой геометрии. Стили мышления.
реферат [25,8 K], добавлен 08.02.2009Исторический процесс развития взглядов на существо математики как науки, основные этапы формирования аксиоматического метода. Теории групп, множеств, отображений и конгруэнтности (равенства) отрезков. Основные аксиоматические теоремы и их доказательства.
курсовая работа [26,2 K], добавлен 24.05.2009Содержание математики как системы математических моделей и инструментов для их создания. Возникновение "теории идей". Натуральные числа, множество целых чисел, рациональное число, вещественное или действительное число. Существующая теория чисел.
реферат [81,7 K], добавлен 13.01.2011Проблема несоизмеримых, первый кризис в основании математики, его следствия и попытки преодоления. Зарождение и развитие понятия числа. Становление теории предела, создание теории действительного числа. Великие метематики: Вейерштрасс, Кантор, Дедекинд.
реферат [65,2 K], добавлен 26.11.2009Изучение теории вероятностей в ходе школьной программы позволяет развивать у школьников логическое мышление, способность абстрагировать, выделять суть. История теории вероятностей и ее научные основы. Виды событий. Операции со случайными событиями.
дипломная работа [88,6 K], добавлен 22.01.2009Этапы развития теории описания пространства, сущность принципа относительности, сформулированного Галилеем. Геометрия Минковского как описание пространства – времени, основные понятия ее описания. Разработка практических занятий по данным темам.
дипломная работа [354,6 K], добавлен 24.02.2010Развитие математики как теории в школе Пифагора. Планиметрия прямолинейных фигур. Стереометрия, теория арифметической и геометрической пропорций. Открытие несоизмеримых величин. Бесконечность как математическая категория. Период академии, фаза упадка.
реферат [24,5 K], добавлен 29.03.2010Основные понятия теории марковских цепей, их использование в теории массового обслуживания для расчета распределения вероятностей числа занятых приборов в системе. Методика решения задачи о наилучшем выборе. Понятие возвратных и невозвратных состояний.
курсовая работа [107,2 K], добавлен 06.11.2011Граф как множество вершин (узлов), соединённых рёбрами, способы и сфера их применения. Специфика теории графов как раздела дискретной математики. Основные способы преобразования графов, их особенности и использование для решения математических задач.
курсовая работа [1,8 M], добавлен 18.01.2013Сущность и предмет теории вероятностей, отражающей закономерности, присущие случайным явлениям массового характера. Изучение ею закономерностей массовых однородных случайных явлений. Описание наиболее популярных в теории вероятностей экспериментов.
презентация [474,2 K], добавлен 17.08.2015