Классический метод вариационного исчисления
Задачи об оптимизации объекта управления в динамике. Общая задача Лагранжа, ее значение. Условие стационарности функционала, выраженное уравнениями Эйлера-Лагранжа. Расчет оптимального управления классическим методом вариационного исчисления уравнения.
Рубрика | Математика |
Предмет | Дифференциальное исчисление |
Вид | контрольная работа |
Язык | русский |
Прислал(а) | incognito |
Дата добавления | 22.07.2015 |
Размер файла | 28,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Применение функции Лагранжа в выпуклом и линейном программировании. Простейшая задача Больца и классического вариационного исчисления. Использование уравнения Эйлера-Лагранжа для решения изопериметрической задачи. Краевые условия для нахождения констант.
курсовая работа [1,2 M], добавлен 16.01.2013Понятия и термины вариационного исчисления. Понятие функционала, его первой вариации. Задачи, приводящие к экстремуму функционала, условия его минимума. Прямые методы вариационного исчисления. Практическое применение метода Ритца для решения задач.
курсовая работа [1,3 M], добавлен 08.04.2015Составление уравнения Эйлера, нахождение его общего решения. Нахождение с использованием уравнения Эйлера-Лагранжа оптимального управления, минимизирующего функционал для системы. Использование метода динамического программирования для решения уравнений.
контрольная работа [170,3 K], добавлен 01.04.2010Нахождение решения уравнения с заданными граничными и начальными условиями, система дифференциальных уравнений. Симметричное преобразование Фурье. Решение линейного разностного уравнения. Допустимые экстремали функционала. Уравнение Эйлера-Лагранжа.
контрольная работа [51,5 K], добавлен 05.01.2016Общий интеграл уравнения, применение метода Лагранжа для решения неоднородного линейного уравнения с неизвестной функцией. Решение дифференциального уравнения в параметрической форме. Условие Эйлера, уравнение первого порядка в полных дифференциалах.
контрольная работа [94,3 K], добавлен 02.11.2011Составление диагональной системы способом прогонки, нахождение решения задачи Коши для дифференциального уравнения на сетке методом Эйлера и классическим методом Рунге-Кутта. Построение кубического сплайна интерполирующей функции равномерного разбиения.
практическая работа [46,1 K], добавлен 06.06.2011Синтез вариационного исчисления и метода функций Ляпунова в основе принципа динамического программирования. Метод знакопостоянных функций Ляпунова в решении задач о стабилизации и синтезе управления для нелинейной и автономной управляемых систем.
курсовая работа [1,2 M], добавлен 17.06.2011Наличие некоторого динамического объекта, т.е. объекта, меняющегося во времени, характерного для задачи управления. Линейная задача быстродействия. Свойства экспоненциала матрицы. Линейные дифференциальные уравнения с управлением, пример интегрирования.
контрольная работа [547,7 K], добавлен 13.03.2015Нахождение интерполяционных многочленов Лагранжа и Ньютона, проходящих через четыре точки заданной функции, сравнение их степенных представлений. Решение нелинейного дифференциального уравнения методом Эйлера. Решение систем алгебраических уравнений.
задача [226,9 K], добавлен 21.06.2009Метод решения задачи, при котором коэффициенты a[i], определяются непосредственным решением системы - метод неопределенных коэффициентов. Интерполяционная формула Ньютона и ее варианты. Построение интерполяционного многочлена Лагранжа по заданной функции.
лабораторная работа [147,4 K], добавлен 16.11.2015