Комбинаторика и бином Ньютона
Понятие вероятности и зарождение науки о закономерности случайных явлений. Достоверное, невозможное и случайное событие как первичное понятие теории вероятностей. Комбинаторные конфигурации, используемые для формулировки и решения комбинаторных задач.
Рубрика | Математика |
Вид | реферат |
Язык | русский |
Дата добавления | 06.01.2015 |
Размер файла | 118,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Министерство образования и науки РФ
ФГБОУ ВПО Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых
Филиал в г. Гусь-Хрустальный
Реферат
по дисциплине: Теория вероятностей и математическая статистика
на тему: «Комбинаторика и бином Ньютона»
Руководитель:
Иванова И.В.
Разработал студент
Абрамова Е.В.
Группа ЗЭ-111
Гусь-Хрустальный 2013
Содержание
Введение
1. Понятие вероятности и зарождение науки о закономерности случайных явлений
1.1 Основные понятия теории вероятности
1.2 Событие: достоверное, невозможное, случайное
2. Комбинаторика
2.1 Перестановки
2.2 Размещения
2.3 Сочетания
3. Бином Ньютона
Задачи
Литература
Введение
Случай, случайность -- с ними мы встречаемся повседневно: случайная встреча, случайная поломка, случайная находки, случайная ошибка. Этот ряд можно продолжать бесконечно. Казалось бы, тут нет места для математики -- какие уж законы в царстве Случая! Но и здесь наука обнаружила интересные закономерности -- они позволяют человеку уверенно чувствовать себя при встреча со случайными событиями.
Ещё в древности было замечено, что имеются явления, которые обладают особенностью: при малом числе наблюдений над ними не наблюдается никакой правильности, но по мере увеличения числа наблюдений всё яснее проявляется определенная закономерность.
1. Понятие вероятности и зарождение науки о закономерности случайных явлений
1.1 Основные понятия теории вероятности
Как наука теория вероятности зародилась в 17 в. Возникновение понятия вероятности было связано как с потребностями страхования, получившего значительное распространение в ту эпоху, когда заметно росли торговые связи и морские путешествия, так и в связи с запросами азартных игр. Слово «азарт», под которым обычно понимается сильное увлечение, горячность, является транскрипцией французского слова hazard, буквально означающего «случай», «риск». Азартными называют те игры, а которых выигрыш зависит главным образом не от умения игрока, а от случайности. Схема азартных игр была очень проста и могла быть подвергнута всестороннему логическому анализу. Первые попытки этого рода связаны с именами известных учёных -- алгебраиста Джероламо Кардана (1501- 1576) и Галилео Галилея (1564 -- 1642). Однако честь открытия этой теории, которая не только даёт возможность сравнивать случайные величины, но и производить определенные математические операции с ними, принадлежит двум выдающимися ученым -- Блезу Паскалю (1623 -- 1662) и Пьеру Ферма. Всё началось с игры в кости.
На развитие теории вероятностей оказали влияние более серьёзные потребности науки и запросы практики, в первую очередь страховое дело, начатое в некоторых странах ещё в 16в. В 16-17вв. учреждение страховых обществ и страхование судов от пожара распространились во многих европейских странах. Азартные игры были для ученых только удобной моделью для решения задач и анализа понятий теории вероятности. Об этом заметил ещё Гюйгенс в своей книге «О расчётах в азартной игре» (1657), которая была первой книгой в мире по теории вероятностей. Гюйгенс впервые ввёл важное для теории вероятностей понятие математического ожидания, которое получило дальнейшее развитие а трудах Даниила Бернулли, Даламбера и др. Понятие математического ожидания находит немало применений а разных других областях человеческой деятельности.
Таким образом, в 60-е годы 17в. были выработаны первые понятия и некоторые элементы теории вероятностей. В последующие два века учёные столкнулись с множеством новых задач, связанных с исследованием случайных явлений. Играет ли природа в кости?
В середине 19в. преподаватель Высшей реальной школы, в городе Брюнне Грегор Иоганн Мендель производил свои ставшие впоследствии знаменитыми опыты с горохом, в результате которых были открыты законы наследственности. Механизм наследования так же случаен, как и исход бросания монеты или игральной кости. Поэтому можно сказать, что природа иногда «играет в кости».
1.2 Событие: достоверное, невозможное, случайное
Теория вероятности, как и любой раздел математики, оперирует определённым кругом понятий. Большинству понятий теории вероятностей даются определение, но некоторые принимаются за первичные, не определяемые, как в геометрии точка, прямая, плоскость. Первичным понятием теории вероятностей является событие. Под событием понимают то, относительно чего после некоторого момента времени можно сказать одно и только одно из двух:
· Да, оно произошло.
· Нет, оно не произошло.
Например, у меня есть лотерейный билет. После опубликования результатов розыгрыша лотереи интересующее меня событие - выигрыш тысячи рублей либо происходит, либо не происходит. Любое событие происходит вследствие испытания (или опыта). Под испытанием (или опытом) понимают те условия, в результате которых происходит событие. Например, подбрасывание монеты - испытание, а появление на ней «герба» - событие. Событие принято обозначать заглавными латинскими буквами: A,B,C,… . События в материальном мире можно разбить на три категории - достоверные, невозможные и случайные.
Достоверное событие - это такое событие, о котором заранее известно, что оно произойдёт. Его обозначают буквой W. Так, достоверным является выпадение не более шести очков при бросании обычной игральной кости, появление белого шара при извлечении из урны, содержащей только белые шары, и т.п.
Невозможное событие - это событие, о котором заранее известно, что оно не произойдёт. Его обозначают буквой E. Примерами невозможных событий являются извлечение более четырёх тузов из обычной карточной колоды, появление красного шара из урны, содержащей лишь белые и чёрные шары, и т.п.
Случайное событие - это событие, которое может произойти или не произойти в результате испытания. События А и В называют несовместными, если наступление одного из них исключает возможность наступления другого. Так появление любого возможного числа очков при бросании игральной кости (событие А) несовместно с появлением иного числа (событие В). Выпадение чётного числа очков несовместно с выпадением нечётного числа. Наоборот, выпадение чётного очков (событие А) и числа очков, кратного трём (событие В),не будут несовместными, ибо выпадение шести очков означает наступление и события А, и события В, так что наступление одного из них не исключает наступление другого. С событиями можно совершать операции. Объединением двух событий С=АUВ называется событие С, которое происходит тогда и только тогда, когда происходит хотя бы одно из этих событий А и В. Пересечением двух событий D=A?? В называется событие, которое происходит тогда и только тогда, когда происходят события и А и В.
2. Комбинаторика
Примеры приведенные в предыдущей главе показывает, что при решении многих задач теории вероятностей оказываются полезными формулы комбинаторики -- при определенных условиях у нас с равной вероятностью получаются размещения с повторениями (если, например, жетоны извлекаются и потом возвращаются обратно), размещения без повторений (если жетоны не возвращаются обратно), перестановки с повторениями и без повторений, сочетания и т. д. Долгое время комбинаторику вообще рассматривали как вспомогательную дисциплину для теории вероятностей, но теперь она приобрела самостоятельное значение.
Общим термином «соединения» мы будем называть три вида комбинаций, составляемых из некоторого числа различных элементов, принадлежащих одному и тому же множеству (например, буквы алфавита, книги в библиотеке, машины на стоянке и т.д.).
2.1 Перестановки
Возьмём n различных элементов: a1 , a2 , a3 , …, an . Будем переставлять их всеми возможными способами, сохраняя их количество и меняя лишь порядок их расположения. Каждая из полученных таким образом комбинаций называется перестановкой. Общее количество перестановок из n элементов обозначается Pn . Это число равно произведению всех целых чисел от 1 до n :
Pn = n! Pn = 1•2•3•…• (n -- 1)•n=n!
Символ n! (называется факториал) - сокращённая запись произведения: 1 · 2 · 3 · … · (n - 1) · n .
Пример. Найти число перестановок из трёх элементов: a, b, c.
Решение. В соответствии с приведенной формулой:
P3 = 1 · 2 · 3 = 6.
Действительно, мы имеем 6 перестановок: abc, acb, bac, bca, cab, cba.
2.2 Размещения
Будем составлять группы из m различных элементов, взятых из множества, состоящего из n элементов, располагая эти m взятых элементов в различном порядке. Полученные комбинации называются размещениями из n элементов по m .
Их общее количество обозначается: и равно произведению:
Пример. Найти число размещений из четырёх элементов a, b, c, d по два.
Решение. В соответствии с формулой получим:
Вот эти размещения: ab, ba, ac, ca, ad, da, bc, cb, bd, db, cd, dc.
2.3 Сочетания
Будем составлять группы из m различных элементов, взятых из множества, состоящего из n элементов, не принимая во внимание порядок расположения этих m элементов. Тогда мы получим сочетания из n элементов по m .
Их общее количество обозначается и может быть вычислено по формуле:
Из этой формулы ясно, что
Заметим, что можно составить только одно сочетание из n элементов по n, которое содержит все n элементов. Формула числа сочетаний даёт это значение, если только принять, что 0! = 1, что является определением 0! .
В соответствии с этим определением получим:
Общее число сочетаний можно вычислить, пользуясь и другим выражением:
Пример . Найти число сочетаний из пяти элементов: a, b, c, d, e по три.
Решение :
Эти сочетания: abc, abd, abe, acd, ace, ade, bcd, bce, bde, cde.
3. Бином Ньютона
Бином Ньютона - это отношение, позволяющее представить выражение (a + b)n (n ? Z+) в виде многочлена, а именно:
(a + b)n = an + Сn1an - 1b + Сn2an - 2b2 + ... + Сnkan - kbk + ... + Сnn - 1abn - 1 + bn.
Числа Сn1, Сn2, ... , Сnn - 1 называются биномиальными коэффициентами.
С помощью следующей таблицы можно определить значения биномиальных коэффициентов для любой степени. Строится он следующим образом - любое число образуется суммой рядом стоящих чисел над ним. Именно потому эта таблица имеет название треугольник Паскаля.
Первая строка в этой таблице содержит биномиальные коэффициенты для n = 1; вторая - для n = 2; третья - для n = 3 и т.д. Поэтому, если необходимо, например, разложить выражение:
( a + b )7 ,
мы можем получить результат моментально, используя таблицу:
Свойства биномиальных коэффициентов
1. Сумма коэффициентов разложения ( a + b ) n равна 2 n .
Для доказательства достаточно положить a = b = 1. Тогда в правой части разложения бинома Ньютона мы будем иметь сумму биномиальных коэффициентов, а слева:
2. Коэффициенты членов, равноудалённых от концов разложения, равны.
Это свойство следует из соотношения:
3. Сумма коэффициентов чётных членов разложения равна сумме коэффициентов нечётных членов разложения; каждая из них равна
Для доказательства воспользуемся биномом:
комбинаторика бином ньютон
Здесь чётные члены имеют знак « + » , а нечётные - « - ». Так как в результате разложения получается 0, то следовательно, суммы их биномиальных коэффициентов равны между собой, поэтому каждая из них равна: что и требовалось доказать.
Задачи
1. У мамы 2 яблока и 3 груши. Каждый день в течение 5 дней подряд она выдает по одному фрукту. Сколькими способами это может быть сделано?
Решение. Имеем набор {я, я, г, г, г}. Всего перестановок пятиэлементного множества 5!, но мы не должны учитывать перестановки, в которых объекты одного типа меняются местами несколько раз, поэтому нужно поделить на возможное число таких перестановок: 2! · 3!
Получаем в итоге
Ответ: 10 способов.
2. Предприятие может предоставить работу по одной специальности 4 женщинами, по другой - 6 мужчинам, по третьей - 3 работникам независимо от пола. Сколькими способами можно заполнить вакантные места, если имеются 14 претендентов: 6 женщин и 8 мужчин?
Решение. Имеем 14 претендентов и 13 рабочих мест. Сначала выберем работников на первую специальность, то есть 4 женщин из 6:
Далее независимо аналогичным образом выберем мужчин на вторую специальность:
Осталось 2 женщины, 2 мужчин и 3 вакантных места, которые, по условию, могут занять любые из четырех оставшихся человек. Это может быть сделано 2 вариантами:
1. 1 женщина и 2 мужчин (выбираем женщину C1 2 = 2 способами)
2. 1 мужчина и 2 женщины (выбираем мужчину C1 2 = 2 способами).
В итого получаем 15 · 28(2 + 2) = 1680 способов.
Ответ: 1680 способов.
3. Сколькими способами могут восемь человек стать в очередь к театральной кассе?
Решение. Существует 8 мест, которые должны занять 8 человек. На первое место может стать любой из 8 человек, т.е. способов занять первое место - 8. После того, как один человек стал на первое место, осталось 7 мест и 7 человек, которые могут быть на них размещены, т.е. способов занять второе место - семь. Аналогично для третьего, четвертого и т.д. места. Используя принцип умножения, получаем произведение - . Такое произведение обозначается как 8! (читается 8 факториал) и называется перестановкой P8.
Ответ: P8 = 8!
4. Алфавит некоторого языка содержит 30 букв. Сколько существует шестибуквенных слов (цепочка букв от пробела до пробела), составленных из букв этого алфавита, если:
- буквы в словах не повторяются?
- буквы в словах могут повторяться?
Решение. Существует шесть мест, на которые нужно разместить 30 букв.
1. Буквы не должны повторяться. Используя принцип умножения, получаем произведение:
Такое произведение достаточно сложно использовать в дальнейшем, и информация задачи представлена в ней в скрытой форме. В комбинаторике используют для таких произведений формулу размещений. Чтобы получить формулу размещений, умножим это произведение на единицу, которую представим следующим образом:
1=== == = А
формула для размещений.
2. Буквы повторяются. Используя принцип умножения, получаем: 303030303030 = 306 = Г - формула для размещений с повторениями.
Ответ: 1) А; 2) Г.
5. Сколько слов можно образовать из букв слова фрагмент, если слова должны состоять:
(а) из восьми букв, (б) из семи букв, (в) из трех букв?
Решение. В слове фрагмент 8 букв алфавита.
(а) Всевозможные перестановки 8 букв по восьми местам:
А = =P8.
(б) Размещения 8 букв по 7 местам: А.
(в) Размещения 8 букв по 3 местам: А.
Ответ: P8, А, А.
6. Компания из двадцати мужчин разделяется на три группы, в первую из которых входят три человека, во вторую -- пять и в третью -- двенадцать. Сколькими способами они могут это сделать? (Ответ записать в виде произведения сомножителей, не вычисляя его.)
Решение. Из 20-ти элементов необходимо сделать три выборки, причем порядок внутри выборок значения не имеет. Поэтому используем формулу для сочетаний. Чтобы выбрать из 20-ти элементов 3, существует С способов. Остается 17 элементов, из которых выбирается 5 элементов - С способами. Остается 12 элементов, из которых выбирается 12 элементов. Это можно сделать С= 1, т.е. одним способом. Используя принцип произведения, получаем: С С С.
Ответ: С С С.
7. 1) Сколько четырехбуквенных слов можно образовать из букв слова сапфир? 2) Сколько среди них таких, которые не содержат буквы р? 3) Сколько таких, которые начинаются с буквы с и оканчиваются буквой р?
Решение.
1. Из шести букв составляются четырехбуквенные слова, причем порядок букв важен для образования новых слов.
Поэтому используется формула для размещений:
А.
2. Необходимо исключить букву р из рассмотрения. Количество слов, не содержащих эту букву:
А.
3. На первое место поставить букву с можно только одним способом. На последнее место поставить букву р можно тоже только одним способом. Остаются 4 буквы, которые необходимо разместить по двум местам:
А.
Ответ: 360, 120, 12.
8. Сколько пятибуквенных слов, каждое из которых состоит из трех согласных и двух гласных, можно. образовать из букв слова уравнение?
Решение. В слове уравнение 3 согласных и 4 гласных буквы русского алфавита. Чтобы посчитать количество требуемых пятибуквенных слов, необходимо посчитать количество сочетаний 3 согласных из 3-х заданных и двух гласных из четырех заданных: С и С. После того, как 5 букв выбраны, необходимо посчитать все возможные перестановки этих букв: ССP5.
Ответ: ССP5.
Сколько различных перестановок можно образовать изо всех букв слова перестановка? Сколько из них начинается с буквы п и оканчивается буквой а?
Решение. В слове перестановка 12 букв, из них повторяются 2 буквы е и две буквы а. Число перестановок из 12 элементов вычисляется с помощью формулы P12. Но среди этих перестановок будут повторяющиеся, в которых буквы е или а меняются местами. Чтобы не считать такие перестановки, используется формула для перестановок с повторениями:
= .
Чтобы посчитать количество перестановок, начинающихся на букву п и оканчивающихся на букву а, необходимо исключить эти элементы и места, на которых они стоят из рассмотрения. Остается 10 букв и десять мест, причем остается только одна повторяющаяся буква е. Применяем формулу для перестановок с повторениями:
= .
Ответ: , .
9. В урне находятся три синих, восемь красных и десять белых шаров одинакового размера и веса, неразличимых на ощупь. Шары тщательно перемешаны. Какова вероятность появления синего, красного и белого шаров при одном вынимании шара из урны?
Решение. Так как появление любого шара можно считать равновозможным, то мы имеем всего n=3+8+9=20 элементарных событий. Если через А, В, С обозначить события, состоящие в появлений соответственно синего, красного и белого шаров, а через m1,m2,m3 -- число благоприятствующих этим событиям случаев, то ясно, что m1=3,m2=8,m3=9. Поэтому
P(A)=3/20=0,15; P(B)=8/20=0,40; P(C)=9/20=0,45.
10. Одновременно брошены две монеты. Какова вероятность появления m гербов (m = 0, 1,2)?
Решение. Рассмотрим возможные при бросании двух монет исходы. Очевидно, их можно описать схемой
ГГ, ГР, РГ, РР,
где Г означает выпадение герба, а Р -- надписи. Таким образом, возможны четыре элементарных события. Поскольку монеты предполагаются однородными и имеющими геометрически правильную форму, то нет никаких оснований предполагать, что одна из сторон какой-либо монеты выпадает чаще других.
Поэтому все четыре случая следует считать равновозможными. Но тогда, обозначив через Pm вероятность выпадения m гербов, легко получим:
P0=1/4; P1=2/4=1/2; P2=1/4.
Литература
1. Теория вероятностей, Исторический очерк, Майстров Л.Е. Издательство: Наука Год издания: 2009 Страниц: 321
2. Мир вероятностей, Статистика в науке, Дайменд С., Библиотечка иностранных книг для экономистов и статистиков Издательство: Статистика Год издания: 1970 Страниц: 157
3. Вероятность. Ф. Мостеллер, Р. Рурке, Дж. Томас. 2008 год. 432 стр. изд МИР Бородин А. Н. Элементарный курс теории вероятностей и математической статистики. 2009 год. 224 стр.
4. Теория вероятностей. Математическая статистика. Бочаров П. П., Печинкин А. В. 2010 год. 296 стр.
5. Теория вероятностей и математическая статистика Волковец А. И., Гуринович А. Б. , 2009. © БГУИР 68 стр.
6. Элементарное введение в теорию вероятностей Гнеденко Б.В., Хинчин А.Я. 2010 Издательство: М., Наука 169 стр.
Размещено на Allbest.ru
Подобные документы
Знакомство с основными понятиями и формулами комбинаторики как науки. Методы решения комбинаторных задач. Размещение и сочетание элементов, правила их перестановки. Характеристики теории вероятности, ее классическое определение, свойства и теоремы.
презентация [1,3 M], добавлен 21.01.2014Основные принципы и формулы классической комбинаторики. Использование методов комбинаторики в теории вероятностей. Формулы числа перестановок, сочетаний, размещений. Формула бинома Ньютона. Свойства биномиальных коэффициентов. Решение комбинаторных задач.
учебное пособие [659,6 K], добавлен 07.05.2012Теория вероятности, понятие вероятности события и её классификация. Понятие комбинаторики и её основные правила. Теоремы умножения вероятностей. Понятие и виды случайных величин. Задачи математической статистики. Расчёт коэффициента корреляции.
шпаргалка [945,2 K], добавлен 18.06.2012История и основные этапы становления и развития основ теории вероятности, ее яркие представители и их вклад в развитие данного научного направления. Классификация случайных событий, их разновидности и отличия. Формулы умножения и сложения вероятностей.
контрольная работа [22,6 K], добавлен 20.12.2009Теория вероятностей — раздел математики, изучающий закономерности случайных явлений: случайные события, случайные величины, их свойства и операции над ними. Методы решения задач по теории вероятности, определение математического ожидания и дисперсии.
контрольная работа [157,5 K], добавлен 04.02.2012Случайное событие и его вероятность. Теорема сложения вероятностей. Закон равномерной плотности вероятности. Случайные величины. Функция распределения и ее свойства. Как наука теория вероятности зародилась в 17 веке.
реферат [96,2 K], добавлен 12.02.2005Сущность понятия "комбинаторика". Историческая справка из истории развития науки. Правило суммы и произведения, размещения и перестановки. Общий вид формулы для вычисления числа сочетаний с повторениями. Пример решения задач по теории вероятностей.
контрольная работа [293,2 K], добавлен 30.01.2014Основные понятия, действия над случайными событиями. Классическое определение, свойства вероятностей. Правила вычисления вероятностей случайных событий. Построение законов распределения вероятностей случайных величин, вычисление числовых характеристик.
задача [82,0 K], добавлен 12.02.2011Классификация случайных событий. Функция распределения. Числовые характеристики дискретных случайных величин. Закон равномерного распределения вероятностей. Распределение Стьюдента. Задачи математической статистики. Оценки параметров совокупности.
лекция [387,7 K], добавлен 12.12.2011Возникновение теории вероятностей как науки, вклад зарубежных ученых и Петербургской математической школы в ее развитие. Понятие статистической вероятности события, вычисление наивероятнейшего числа появлений события. Сущность локальной теоремы Лапласа.
презентация [1,5 M], добавлен 19.07.2015