Обратные тригонометрические функции (аркфункции): определение и свойства. Теоремы об аркфункциях. Доказательство числовых тождеств. Решение уравнений и неравенств с аркфункциями. Использование свойств монотонности обратных тригонометрических функций.
Рассмотрение различных способов решения тригонометрических уравнений. Ознакомление с понятием и историей возниконовения тригонометрии. Составление алгоритма решения задания. Описание воспитания самостоятельности и творческого отношения к деятельности.
Особенности определения технических показателей работоспособности проектируемой системы массового обслуживания. Характеристика аспектов решения уравнения Колмогорова. Определение требуемого количества операторов для безотказного функционирования.
Ангармонический осциллятор с различной степенью нелинейности: приближенные методы и прямые численные расчеты потенциалов при решении случае уравнения Шредингера с потенциалом четвертой, шестой и восьмой степенями нелинейности программой в среде Maple.
Метод Эйлера как наиболее простой численный метод решения обыкновенных дифференциальных уравнений. Общая схема численных методов. Локальная ошибка дискретизации метода Эйлера. Применение многошаговой системы перехода от точки (Xi, Yi) к следующей.
- 5586. Решетка мультимножеств
Построение решетки мультимножеств и соответствующей абстрактной решетки, сигнатура которой состоит из операций объединения и пересечения мультимножеств. Характеристические функции мультимножества. Введение бинарного отношения включения в мультимножествах.
Изучение особенностей применения основной теоремы теории делимости к циклическим подгруппам. Исследование аддитивной группы целых чисел. Определение сущности изоморфизма. Ознакомление с теоремой теории делимости. Анализ примеров циклических групп.
- 5588. Риманова геометрия
Научно-исследовательские труды Б. Римана. Риманова геометрия – раздел дифференциальной геометрии, главным объектом изучения которого являются римановы многообразия, с дополнительной структурой, римановой метрикой. Идея математического пространства.
- 5589. Римские цифры
Ознакомление с историей развития римской (буквенной) системы нумерации. Рассмотрение правил записи чисел римскими цифрами. Исследование и характеристика особенностей применения римских цифр. Изучение процесса записи арабских чисел с помощью римских.
- 5590. Рисунок и перспектива
Изучение математического изобразительного искусства, его использования в рисовании, литографии, графике. Характеристика техники выполнения рисунка, фрактала, ленты Мебиуса. Описания перспективы, науки об изображении предметов в пространстве на плоскости.
Означення ермітових сплайнів з нелінійними за параметрами виразами в ланках. Виведення формул для параметрів ермітових сплайнів з експоненціальними та кубічними ланками. Алгоритм рівномірного наближення функцій з заданою похибкою, методи її розрахунку.
- 5592. Рівномірний розподіл
Параметри рівномірного розподілу. Стаціонарні та ергодичні випадкові процеси. Значення щільності в граничних точках. Моменти неперервного рівномірного розподілу. Генератор випадкового вибору. Графік щільності ймовірностей. Приклади випадкових процесів.
Дослідження умов існування та єдиності локальних і глобальних розв’язків нескінченних систем диференціальних рівнянь, що описують нескінченні ланцюги лінійно зв’язаних нелінійних осциляторів. Нелінійні різницеві рівняння з варіаційною структурою.
Загальне рівняння площини: якщо в просторі задано довільну площину і фіксовану прямокутну декартову систему координат, то площина визначається в цій системі координат рівнянням першого ступеня. Колінеарні вектори. Рівняння площини у відрізках на осях.
Алгоритми розв’язування систем лінійних рівнянь з невідомими та параметрами. Використання квадратних рівнянь з параметрами при розв’язуванні фізичних задач. Алгебраїчні, ірраціональні, показникові, логарифмічні та тригонометричні рівняння з параметрами.
Опис процесу формування вміння розв'язувати рівняння виду х2=а, розуміння змісту основної тотожності квадратного кореня. Розвиток обчислювальних навичок, розв'язування рівняння х2 =а аналітичним способом. Виховання культури спілкування на уроках.
Дослідження питання про колостандартність операторів, їх спектрів, власних і приєднаних елементів, резольвент. Несамоспряжений диференціальний оператор Штурма-Ліувілля, його відкриття. "Періодичні" крайові умови. "Асимптотика" власних значень оператора.
Аналіз оператору зсуву. Інтерполювання функцій, що задаються таблично. Підсумовування функцій, лінійні різницеві рівняння зі сталими коефіцієнтами. Однорідні та неоднорідні різницеві рівняння. Аналіз економічної моделі прискорення Самюельсона-Хікса.
Клас різницевих апроксимацій — оператори на неортогональних шаблонах прямокутної сітки. Аналіз різницевих схем з оператором Лапласа на неортогональному семиточковому шаблоні у площині та неортогональному 13-точковому шаблоні у тривимірному просторі.
- 5600. Рішення лінійних рівнянь
Розроблення та опис прикладу алгоритму розв'язування лінійних рівнянь з однією змінною. Спрощення виразів в лівій та правій частинах рівняння окремо через розкриття дужок та зведення подібних доданків. Основні принципи знаходження невідомого множника.
Особливості та приклади вирішення лінійної виробничої, двоїстої та транспортної видів задач. Розподіл капітальних вкладень. Динамічна задача керування запасами. Аналіз прибутковості й ризику фінансових операцій. Оптимальний портфель цінних паперів.
Системи лінійних рівнянь, їх визначники другого і третього порядків. Формула Ньютона-Лейбніца та обчислення площ плоских фігур в прямокутній системі координат. Основні правила диференціювання і похідні будь-яких елементарних функцій та вищих порядків.
Натуральное число как первый математический объект и его определение в математическом образовании, возникновение однородности. Родовое содержание натурального числа как развивающаяся структура количественных отношений. Видовые формы натурального числа.
История эллинских поселений и создание единой математической науки в Элладе. Первые философские системы Малой Азии. Жизненный путь и научные открытия основателя милетской школы Фалеса Милетского. Афоризмы Фалеса и теорема о параллельности прямых.
Провідна роль методу математичної індукції у вищій математиці. Повна і неповна індукція. Помилки в індуктивних міркуваннях. Принцип математичної індукції. Узагальнення принципу математичної індукції. Приклад доведення методом математичної індукції.
Систематизація основних типів задач з параметрами. Рівняння, нерівності, їх системи і сукупності, які необхідно вирішити. Розв’язання лінійних, квадратних, ірраціональних та інших рівнянь з параметрами. Нерівності та системи рівнянь з параметрами.
Визначення типів задач, де доцільною є реалізація алгоритмів формоутворення двовимірних сімей геометричних об'єктів через моделювання у тривимірному просторі. Отримання розв'язків за допомогою нормальних функцій в задачах формоутворення сім'ї кривих.
Розклад факторів напружено-деформованого стану в ряди Фур'є. Побудова алгоритму на основі сплайн-апроксимації. Встановлення закономірностей у розподілі зусиль та моментів. Застосування циліндричних оболонок кругового поперечного перерізу в техніці.
Розробка нового підходу для дослідження паралельності алгоритмів розв'язання матричних систем. Розгляд особливостей ланцюгового та централізованого способів передачі інформації, а також схем діагоналізації та розрізання розв'язання матричних систем.
Визначення розв'язки лінійного двоточкового і лінійного краєвого завдання для лінійного неоднорідного гіперболічного рівняння другого порядку. Опис умов існування розв'язок краєвих завдань квазілінійних рівнянь другого порядку. Розрахунок класів функцій.
