Встановлення умов глобальної розв’язності та нерозв’язності задачі Коші для виродного параболічного рівняння з нелокальним джерелом. Аналіз визначення початкових функцій, що повільно спадають до нуля та містять нелокальний множник у від’ємному степені.
Неперервність за Гельдером розв’язків достатньо широкого класу квазілінійних параболічних рівнянь. Універсальні оцінки розв’язку задачі Коші для рівняння поблизу часу загострення. Значення, специфіка та характеристика критичних показників типу Фуджити.
Аналіз методів отримання нелінійного рівняння Фоккера-Планка. Визначення еволюційних рівнянь для першого і другого статистичних моментів. Характеристика скейлінгових законів руху для системи вільних частинок і дослідження картини переходів в системі.
Разработка, программная реализация численного метода решения систем дифференциальных уравнений с произвольными, в том числе нелинейными, граничными условиями на основе методов Бубнова-Галеркина. Исследование устойчивости решений на основе метода Ляпунова.
Повернення позички та нарахованих відсотків після закінчення строку кредитного договору, обсяг річних внесків. Визначення нетто-ставки зі страхування та брутто-ставки з урахуванням заданого навантаження. Початковий страховий внесок при народженні дитини.
Анализ парирования отказов комбинационных схем, реализующих конфигурируемые логические блоки программируемых логических интегральных схем типа FPGA в функционально-полном толерантном базисе. Реконфигурация логики системы с целью ее восстановления.
Формула Валліса як перше бачення числа Пі у вигляді границі легко обчислюваної раціональної варіанти. Особливості оцінки величини факторіалу при великих значеннях за допомогою формули Стірлінга. Основні методики розрахунку рекурентних інтегралів.
Разработка рекуррентного алгоритма, позволяющего получать сильно состоятельные оценки параметров многомерных по входу линейных динамических систем при наличии помех наблюдения во входных и выходных сигналах. Оценка эффективности предложенного метода.
Понятие рекуррентной нерекуррентной формул. Некоторые свойства чисел последовательности Фибоначчи. Система счисления, основанная на числах Фибоначчи. Схема прибавления, принцип перехода к следующей последовательности. Числа Каталана, элементы массива.
Анализ традиционного подхода к задаче обработки временного ряда. Обоснование применения рекуррентного варианта метода наименьших квадратов. Характеристика процедуры реализации рекуррентной обработки измерений для случая, когда они заданы нечетко.
Дослідження проблеми скінченностанової спряженості для автоморфізмі бінарного кореневого дерева. Запропонований рекурсивний критерій надає можливість ефективного розв’язання проблеми скiнченностанової спряженостi для певного класу автоморфiзмiв.
- 5442. Рекурсивные функции
Сущность и значение кодирования программ. Характеристика и отличительные черты теоремы о параметризации, описание и специфика универсальных функций. Применение теоремы Клини о нормальной форме. Синтаксис и семантика, теорема Райса и математическая логика.
- 5443. Рекурсивные функции
Изучение проблемы формализации алгоритма (рекурсивных функций). Определение частичной функции и упорядочивание последовательности. Теория вычислимости и тезис Черча. Элементарные операции над простейшими функциями: композиция, соединение и рекурсия.
- 5444. Реляционная алгебра
Основы реляционной алгебры, её операции и замкнутость. Реляционные операторы и специальные реляционные операции. Выражение реляционного исчисления кортежей и реляционные исчисления с переменными на доменах. Элементы синтаксиса QUEL и языка предикатов.
Основна ідея та предмет вивчення реляційної алгебри, її структура, принципи та значення в системі наук. Зміст теоретико-множинних операцій. Загальна інтерпретація реляційних операцій. Кортежні змінні і правильно побудовані формули реляційного числення.
- 5446. Рене Декарт
Короткі біографічні дані про життя Рене Декарта та навчання в єзуїтському коледжі. Процес доведення придатності математичних принципів для пізнання природи та їхню велику користь. Сутність теорії пізнання та її складові, різниця інтуїції та дедукції.
Анализ правовой документации, регламентирующей развитие математического образования и подготовку специалистов для сферы образования в России. Описание системы рефлексивных заданий для контактной и внеконтактной самостоятельной работы по математике.
Определение уравнения прямой. Расчет координаты точки, уравнения плоскости. Вычисление координаты точки пересечения двух прямых, длины отрезка, отсекаемого от оси абсцисс плоскостью, проходящей через прямую. Анализ формы кривой по заданному уравнению.
Использование команды plot и fplot при построении графиков. Решение дифференциальных уравнений с использованием классических алгоритмов численных методов Эйлера и Рунге-Кутта четвертого порядка. Построение графика значений по методам дифференцирования.
Проверка точек нахождения в одной плоскости тетраэдра через расчет его объёма, длину высоты, расстояние между скрещивающимися рёбрами. Решение системы линейных алгебраических уравнений. Составление уравнения гиперболы в канонической системе координат.
Решение нелинейных алгебраических уравнений, подходы и методики данного процесса, его порядок и этапы. Решение системы двух нелинейных алгебраических уравнений. Определитель матрицы, ее умножение и сложение. Системы линейных алгебраических уравнений.
Место, теоретическая основа, связи линейных, квадратных, кубических, логарифмических, показательных, тригонометрических уравнений в курсе математики средней школы. Практическое выявление самых распространенных в математике уравнений и способов их решения.
Понятие алгебраического уравнения четвертой степени, история его решения. Пример решения биквадратного и возвратного уравнений четвертой степени. Решение Декарта—Эйлера. Анализ схемы метода Феррари, разложения на множители и кубическая резольвента.
Формулы комбинаторики. Расчет количества перестановок и сочетаний объектов. Факториал - произведение всех натуральных чисел. Значение расположения элементов. Способы размещения, перестановки предметов и распределения между ними уникальных атрибутов.
Способы определения абсолютного и относительного прироста урожайности в отчетном периоде по сравнению с базисным. Основные этапы расчета среднегодового абсолютного прироста и индивидуальных индексов. Характеристика свойств индексов Ласпейреса и Пааше.
Способы решения геометрических задач, рассчитанных на применение аналитических методов. Тенденции использования элементов алгебры и математического анализа при их решении. Методы, приемы и подходы к решению задачи, содержащей буквенные данные (параметры).
Определение затрат на осуществление связи при имеющихся параметрах кабелей. Построение вектора-градиента, составленного из коэффициентов целевой функции. Нахождение оптимального решения двойственной задачи по теореме равновесия. Метод идеальной точки.
Нахождение члена последовательности рекуррентного соотношения. Вычисление корней уравнения. Определение данных выборки. Построение полного потока в транспортной сети. Создание таблицы истинности логического выражения. Упрощение с помощью карты Карно.
Определение третьего порядка по правилу разложения по элементам первой строки. Использование формулы сокращенного умножения для знаменателя. Исследование функций методом дифференцированного исчисления. Решение дифференциального уравнения первого порядка.
Приближение табличных данных конкретной системой базисных функций по методу наименьших квадратов. График разности исходной (табличной) и аппроксимирующей функций. Численное решение задачи коши для обыкновенного дифференциального уравнения первого порядка.
