- 5521. Теория графов
Основные понятия теории графов. Алгоритм построения эйлерового пути. Теория графов как область дискретной математики, особенностью которой является геометрический подход к изучению объектов. Задача коммивояжера как одна из задач теории комбинаторики.
- 5522. Теория графов
Определение понятия и сущности графов. Изучение проблемы построения неографа с заданным списком вершин и предписанными теоретическими свойствами. Описание реализации алгоритмов построения связных графов и деревьев в пакете символьной математики Maple.
- 5523. Теория графов
Главные концепции и содержание теории графов, ее место и значение в современной математической науке. Матрицы, ассоциированные с графами, принципы реализации различных операций с ними. Отличительные особенности и структура ациклических графов, их обходы.
- 5524. Теория графов
Краткий перечень основных понятий теории графов как раздела дискретной математики. Понятия смежности и инцидентности. Матрицы смежности и инцидентности, достижимости и связности. Маршруты и пути. Применение методов теории графов в прикладных задачах.
- 5525. Теория графов
Диаграмма Эйлера-Венна для множества. Системы счисления с креном. Построение Эйлеровой цепи в неориентированном графе. Определение минимального остовного дерева в неориентированном нагруженном графе. Понятие булевой функции и методы ее представления.
- 5526. Теория графов
История возникновения теории графов. Основные ее определения и теоремы. Применение положений данной теории в школьном курсе математики, в различных областях науки и техники. Объяснение теоретического материала на примере задач по естествознанию.
- 5527. Теория графов
Исследование математической теории о совокупности непустого множества вершин и ребер. Анализ кратности неориентированных и ориентированных дуг. Характеристика понятия эквивалентности при множестве вершин. Обоснование гомеоморфного подразбиения дуги.
- 5528. Теория графов
Построение графа отношения "x+y<=7" на множестве М={1,2,3,4,5,6}. Матрица сложности (вершин), инциденций (ребер) и расстояний. Вектор удаленности, центр и периферийные вершины. Радиус и диаметр графа. Числа внутренней и внешней устойчивости графа.
- 5529. Теория графов
Сущность теории графов – как области дискретной математики, особенностью которой является геометрический подход к изучению объектов. Основные термины и теоремы теории графов, способы и методы их задания: геометрический, матрица смежности и инцидентности.
- 5530. Теория графов
Первая работа по теории графов всемирно известного математика и механика Леонардо Эйлера. Построения электрических цепей и подсчёта химических веществ с различными типами молекулярных соединений. Становление кибернетики и развитие вычислительной техники.
Экономическое содержание двойственной задачи. Правила построения симметричных двойственных задач. Преобразование матрицы методом полного исключения переменных. Рассмотрение вопроса о целесообразности включения продукта в производственную программу.
Основные понятия теории систем дифференциальных уравнений на примере нормальных систем. Класс нормальных линейных однородных систем данных уравнений. Понятие фундаментальной системы решений. Задача Коша, метод Эйлера и исключения неизвестных функций.
Противостояние логицизма и интуиционизма, формализма и теоретико-множественных оснований математики. Применяемые в математике аксиомы выбора, закон исключенного третьего, аксиомы сводимости, понятия теории множеств. Значение прикладной математики.
Актуальность решения текстовых задач в современной методике преподавания математики. Понятие и роль текстовых задач в курсе алгебры. Психолого-педагогические основы формирования умения решать данные задачи. Алгебраический и геометрический метод решения.
- 5535. Теория игр
Решение конфликтной ситуации двух лиц в чистых и смешанных стратегиях аналитическим методом, понизив порядок платежной матрицы. Математические ожидания выигрыша первого игрока при его смешанной стратегии для обеих чистых стратегий второго игрока.
- 5536. Теория игр
Изучение понятий теории игр. Порядок составления платежной матрицы. Смешанное расширение матричной игры. Доминируемые стратегии в теории игр. Процесс создания математической игровой модели. Матричная игра в чистых стратегиях, ее взаимосвязь с природой.
- 5537. Теория игр
Понятие и отличительные черты нестратегической теории игр, ее характеристика и применение. Значение и описание кооперативной теории игр. Специфика и использование антагонистических и позиционных игр. Решение стандартной задачи линейного программирования.
- 5538. Теория игр
Теория игр как новый раздел оптимизационного подхода, позволяющего решать новые задачи при принятии решений, применяется при выборочных обследованиях конечных совокупностей, при проверке статистических гипотез. Практическое использование смешанных стратег
- 5539. Теория Игр
Особенности проведения математического анализа конфликта. Теория игр как раздел прикладной математики, изучающий формальные модели принятия оптимальных решений в условиях конфликта. Математические аспекты неоклассической экономики. Виды игровых моделей.
- 5540. Теория игр
Изучение формальных моделей принятия оптимальных решений в условиях конфликта. Конкретизация объектов конфликта и связей между ними в теории игр. Рассмотрение примеров бескоалиционной игры. Антагонистические и позиционные игры в современной теории игр.
- 5541. Теория игр
Игра в нормальной форме. Ситуации сильного равновесия. Дуэли с одним выстрелом. Вектор Шепли произвольных игр и для игр власти. Арбитражная схема Нэша. Ситуация равновесия в позиционной игре с полной информацией, в непрерывных антагонистических играх.
- 5542. Теория игр
Вычисление нижних и верхних границ и составление платежных матриц. Определение стратегий игры и седловых точек согласно заданным матрицам. Ознакомление с решением матричных игр графоаналитическим методом с помощью применения электронных таблиц excel.
- 5543. Теория игр
Задача на составление платежной матрицы. Матричная игра в чистых стратегиях. Смешанное расширение игры. Нахождение оптимальной стратегии по критерию Гурвица. Биматричные игры, ситуации равновесия по Нэшу. Векторы как дележи в кооперативной игре трех лиц.
- 5544. Теория игр
Верхняя и нижняя цена игры, проверка на наличие седловой точки. Возможность как наихудшего, так и наилучшего для человека поведения природы. Принцип недостаточного основания Лапласа. Критерий минимального риска Севиджа. Проверка правильности решения игры.
Понятие теории игр как теории математических моделей принятия решений в условиях неопределенности, столкновения, конфликтных ситуациях. Неформальное описание игр и некоторые примеры: игры двух лиц с нулевой суммой, с седловой точкой. Смешанные стратегии.
Матричные антагонистические игры, схема принятия решений. Основная теорема теории матричных игр (по Дж. фон Нейману). Теорема о принципе максимина. Игры с нулевой суммой в чистых стратегиях. Вычисление оптимальных стратегий на примере решения задач.
Игра в нормальной форме. Исход сильного равновесия без создания коалиции игроков. Дуэли с одним выстрелом. Вектор Шепли произвольных игр. Арбитражная схема аксиомы Нэша. Существование ситуации равновесия в конечной позиционной игре с полной информацией.
Определение цены реализации и полной себестоимости единицы продукции в зависимости от технологий. Расчет доли продукции предприятия, приобретаемой населением в зависимости от соотношения цен на продукцию. Особенности итерационного метода Брауна-Робинсона.
- 5549. Теория информации
Разница между информацией и энтропией. Системы, которые соответствуют эргодической теории. Построение хода Хэмминга для передачи 4-х разрядной информационной комбинации, процесс обнаружения ошибки. Возможности предсказания поведения вероятностных систем.
- 5550. Теория катастроф
Применения теории катастроф. Значение элементарной теории катастроф. Потенциальные функции с двумя активными переменными. Гиперболическая омбилическая катастрофа Рене Тома. Катастрофа типа "Бабочка", "Ласточкин хвост", катастрофы с точкой возврата.