Рождение математики в Элладе

История эллинских поселений и создание единой математической науки в Элладе. Первые философские системы Малой Азии. Жизненный путь и научные открытия основателя милетской школы Фалеса Милетского. Афоризмы Фалеса и теорема о параллельности прямых.

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 23.04.2010
Размер файла 16,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Рождение математики в Элладе

Появление этой науки в 6 веке до н.э. до сих пор кажется чудом. В течение 20 или 30 предыдущих веков народы Древнего Востока сделали немало открытий в арифметике, геометрии и астрономии. Но единую математическую науку они не создали, да и не пытались ее создать. Эллинам же это удалось с первой попытки, в течение одного столетия. Что подготовило их к такому подвигу? На полтораста лет раньше - в середине 8 века до н.э. - эллины пережили культурную революцию. Под влиянием финикийцев они изобрели свой алфавит, включив в него гласные буквы. Тогда же были записаны поэмы Гомера. Они стали первым учебником культуры, доступным каждому эллину - даже неграмотному. Ведь стихи нетрудно выучить наизусть! В ту же эпоху начались Олимпийские игры. На этих "съездах доброй воли" раз в 4 года встречались и дружески общались самые активные и просвещенные граждане из всех городов Эллады. Число таких городов с середины 8 века начало быстро расти, за счет заморской колонизации. Скудная почва Эллады приводила к перенаселению каждого быстро развивающегося города. Тогда несколько десятков или сотен семей вместе переправлялись за море и селились на берегу - рядом с местными "варварами". У них эллины покупали зерно и различное сырье, в обмен на продукты своего ремесла. Разведав окрестные моря и земли, эллины знакомились с культурой соседних народов, учились у них и сами пытались их просветить. Все это происходило в форме народной самодеятельности, без приказа властей. Жители городской республики - полиса - ежедневно обсуждали на улицах и площадях все волнующие их вопросы: от видов на урожай и настроения окрестных варваров до заморских вестей, привезенных заезжим купцом. Самые интересные вести приходили из царств Ближнего Востока: из Египта и Ассирии, а после гибели Ассирийской державы - из поделивших ее владения Вавилонии и Мидии. В середине 6 века до н.э. все эти земли попали под власть нового народа - персов, которые установили прочный мир в своей огромной империи. Теперь многие любознательные эллины смогли безопасно путешествовать по землям Персидской державы: одни - с торговыми целями, другие - в надежде приобщиться к мудрости древних египтян и вавилонян. Дома такой путешественник возбуждал жадное любопытство сограждан. Но не во всем ему верили на слово. Например, он говорил, будто в Египте стоят рукотворные холмы из камня - гробницы древних царей, высотою в 200 или 300 локтей каждая. Неужели он сам измерил их высоту? Как он это сделал? Пусть докажет, что его слова - правда! И еще: он сказал, что мудрые египтяне умеют предсказать срок будущего затмения Луны или Солнца. Пусть объяснит, как они это делают! И когда мы увидим очередное затмение в нашем городе? Видимо, первым греком, который научился убедительно отвечать на такие вопросы, стал Фалес из города Милета; он жил между 625 и 547 годами до н.э. Известно, что в 585 году до н.э. Фалес впервые предсказал эллинам солнечное затмение. Позднее эллины признали Фалеса одним из семи великих мудрецов основателей греческой культуры и науки. Сделал ли Фалес какие-то новые открытия в математике? Может быть, и нет. Не исключено, что все приписываемые ему теоремы были прежде известны, как факты, египтянам и вавилонянам. Но заслуга Фалеса в том, что он превратил эти сведения и рецепты в доказанные теоремы. Фалес приделал к научным фактам "корни", ведущие к простейшим утверждениям - тем, которые доступны интуиции обычного человека. Слушая рассуждения Фалеса, любой гражданин Милета мог прийти к мысли, что не обязательно принимать на веру всю древнюю мудрость. Каждое открытие мудрецов можно проверить и повторить, следуя несложным правилам умозаключений. Сами эти правила знакомы любому горожанину по опыту политических споров в народном собрании. Таким образом, Фалес превратил древнюю и священную ученость в предмет сомнений и доказательных споров. Искушенные в спортивных состязаниях, эллины не знали до той поры сложных интеллектуальных игр, вроде шахмат. С легкой руки Фалеса, геометрия стала первой такой игрой. Вскоре она сделалась в Элладе почетным и увлекательным занятием, как бы национальным видом спорта - наравне с политикой. В геометрии появились "гроссмейстеры", которые превзошли достижения Фалеса и начали открывать такие математические истины, которые не снились древним мудрецам. Первым в ряду этих героев оказался Пифагор с острова Самос: он жил примерно с 580 по 500 год до н.э. Около 540 года до н.э. Пифагор основал в греческом городе Кротоне на побережье Южной Италии первый "математический клуб", больше похожий на тайное религиозное братство.

Фалес Милетский

Фалес Милетский (ок. 624 - ок. 546 до н.э.) - греческий философ и математик из Милета. Представитель ионической натурфилософии и основатель милетской школы. Считался одним из семи мудрецов Греции. В Египте занимался изучением причин наводнений, нашел способ измерения высоты пирамид. По словам Геродота, Фалес предсказал солнечное затмение, наблюдавшееся 28 мая 585 до н.э. Считал материю одушевленной. Пытаясь определить основу материального мира, пришел к выводу о том, что ею является вода. Фалес (между 640 и 545 до Р.Х.) - древнегреческий философ, основатель Милетской школы философии, одной из первых зафиксированных философских школ.

… Хотя принято считать, что западная философия начинается с греков однако первые философские системы возникли не в самой Греции а на западном побережье Малой Азии - в ионийских городах, которые были основаны греками и в которых раньше, чем в самой Греции получили развитие промышленность, торговля и духовная культура Этот район еще называют Ионией, поэтому философские системы разработанные философами - выходцами из этого района, носят название ионийской философии. Впервые философские воззрения возникли в Милете в VI-V веках до Р.Х. Милет в то время был крупнейшим из всех малоазиатских греческих городов. Фалес происходил из знатного рода. В своей жизни и творчестве соединял вопросы практики с теоретическими проблемами, касающимися вопросов мироздания. Он много путешествовал по разным странам используя эти путешествия для расширения и приобретения знания Был всесторонним ученым и мыслителем, изобрел несколько астрономических приборов. Стал известен в Греции тем, что удачно предсказал солнечное затмение в 585 г. до Р.Х. Все свои натурфилософские познания Фалес использовал для создания стройного философского учения. Так, он считал, что все существующее порождено водой, понимая под ней влажное первовещество Вода - это источник, из которого все постоянно происходит. При этом вода и все, что из нее произошло, не являются мертвыми, они одушевлены. В качестве примера своей мысли Фалес приводил такие вещества как магнит и янтарь: так как магнит и янтарь порождают движение значит они обладают душой. Фалес представлял весь мир одушевленным, пронизанным жизнью. Он заложил теоретические основы учения, имеющее название гилозоизм. Хотя гилозоизм имеет свои корни в мифологии, у Фалеса он получает философское обоснование. По Фалесу, природа, как живая, так и неживая, обладает движущим началом, которое называется такими именами, как душа и Бог. В области науки Фалесу принадлежит заслуга в определении времени солнцестояний и равноденствий, в установлении продолжительности года в 365 дней, открытие факта движения Солнца по отношению к звездам. Он также имеет заслуги в области создания научной математики. Так, считают, что он первым сумел вписать треугольник в круг. Все это принесло Фалесу славу первого мудреца из знаменитых "семи мудрецов" древности. Плутарх приводит следующие оригинальные высказывания Фалеса: "Что прекраснее всего? - Мир, ибо все, что прекрасно устроено, является его частью. Что мудрее всего? - Время, оно породило одно и породит другое. Что обще всем? - Надежда: ее имеют и те, у кого нет ничего другого. Что полезнее всего? - Добродетель, ибо благодаря ей все иное может найти применение и стать полезным. Что самое вредное? - Порок, ибо в его присутствии портится почти все. Что сильнее всего? - Необходимость, ибо она непреодолима. Что самое легкое? - То, что соответствует природе, ибо даже наслаждения часто утомляют" [Плутарх. Пир семи мудрецов.9. 153]

Афоризмы Фалеса

Что прекраснее всего? - Мир, ибо он творение бога.

Что быстрее всего? - Быстрее всего ум, он обегает все.

Что всего мудрее? - Время, ибо оно одно открывает всё.

Что самое общее для всех? - Надежда, ибо если у кого и ничего нет, то она есть.

Что сильнее всего? - Необходимость, ибо она властвует над всем.

Что трудно? - Познать самого себя.

Что легко? - Давать советы другим.

Кто счастлив? - Тот, кто здоров телом, одарен спокойствием духа и развивает свои дарования.

Как легче всего переносить несчастье? - Если видеть врагов своих в еще худшем положении.

Невежество - тяжкое бремя.

Поучай и учись лучшему.

Те, кто совершают грех, не могут спрятаться от божьего ока и даже не могут утаить от него свои мысли.

Я благодарен судьбе за три вещи: во-первых, за то, что родился человеком, а не зверем; во-вторых, за то, что мужчиной, а не женщиной; в-третьих, что эллином, а не варваром.

Поручись и пострадаешь.

ем отличается жизнь от смерти?" - спросили Фалеса. - "Ничем". "Почему же ты тогда не умираешь?" - "Потому, - ответил он, - что нет никакой разницы".

Теорема Фалеса

Если параллельные прямые, пересекающие две заданные прямые а и b, отсекают на одной из этих прямых равные отрезки, то они отсекают равные отрезки и на другой из них.


Подобные документы

  • Ознакомление с жизнью и научной деятельностью древнегреческих ученых Фалеса Милетского, Пифагора, Демокрита и Аристотеля. Рассмотрение вклада в развитие математики Аристотеля и Аполлония Пергского. Научные достижения математика Андрея Петровича Киселева.

    презентация [491,1 K], добавлен 21.11.2011

  • Построение угла равного данному, биссектрисы данного угла, середины отрезка, перпендикулярных прямых, треугольника по трем элементам. Теорема Фалеса и геометрическое место точек. Построение с использованием свойств движений. Метод геометрических мест.

    дипломная работа [359,1 K], добавлен 24.06.2011

  • Краткая биографическая справка из жизни Пьера Ферма. Общее понятие про правильные многоугольники. Числа математика, их история. Великая теорема Ферма, случаи доказательства. Особенности облегченной и малой теоремы. Роль математики в деятельности Уайлсома.

    контрольная работа [501,2 K], добавлен 14.06.2012

  • Общая характеристика примеров нахождения точки пересечения двух прямых. Знакомство с условиями параллельности и перпендикулярности прямых, рассмотрение особенностей решения уравнений. Анализ способов нахождения углового коэффициента искомой прямой.

    презентация [97,6 K], добавлен 21.09.2013

  • История возникновения и развития математической логики как раздела математики, изучающего математические обозначения и формальные системы. Применение математической логики в технике и криптографии. Взаимосвязь программирования и математической логики.

    контрольная работа [50,4 K], добавлен 10.10.2014

  • История становления математики как науки. Период элементарной математики. Период создания математики переменных величин. Создание аналитической геометрии, дифференциального и интегрельного исчисления. Развитие математики в России в XVIII-XIX столетиях.

    реферат [38,2 K], добавлен 09.10.2008

  • Методика преподавания темы "Параллельные прямые. Задачи, связанные с параллельными прямыми". Проведение практических уроков по теме "Параллельность прямых и использование признаков параллельности при решении геометрических задач".

    курсовая работа [195,8 K], добавлен 15.12.2003

  • Уравнение прямой, проходящей через данную точку перпендикулярно заданному нормальному вектору. Условия параллельности и перпендикулярности двух прямых. Условия пересечения, параллельности или совпадения двух прямых, заданных общими уравнениями.

    презентация [13,8 M], добавлен 19.12.2022

  • История развития математической науки в Европе VI-XIV вв., ее представители и достижения. Развитие математики эпохи Возрождения. Создание буквенного исчисления, деятельность Франсуа Виета. Усовершенствование вычислений в конце XVI – начале XVI вв.

    презентация [7,3 M], добавлен 20.09.2015

  • Обзор развития европейской математики в XVII-XVIII вв. Неравномерность развития европейской науки. Аналитическая геометрия. Создание математического анализа. Научная школа Лейбница. Общая характеристика науки в XVIII в. Направления развития математики.

    презентация [1,1 M], добавлен 20.09.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.