Целесообразность использования статистических методов в проблеме поиска оптимальных условий проведения эксперимента. Наука планирования и организации эксперимента. Обработка экспериментальных данных методом наименьших квадратов, регрессионная зависимость.
Место задачи коммивояжера в теории комбинаторики с ее применением при разработке программного обеспечения. Постановка и математическая модель задачи коммивояжера. Особенности решения задачи коммивояжера методом ветвей и границ и венгерским методом.
Балансовые уравнения модели и определение потоков средств производства по отраслям. Технологическая матрица прямых затрат, величина конечного продукта. Модель межотраслевого баланса Леонтьева. Критерий продуктивности и система линейных уравнений.
Биологические принципы поведения муравьиной колонии, история создания соответствующих алгоритмов и особенности их использования. Этапы решения задачи при помощи муравьиных алгоритмов, оценка их достоинств и недостатков в решении задачи оптимизации.
Приводятся аналитические выражения для автоматического вычисления весовых коэффициентов важности. Рассматривается задача аппроксимации области эффективности в многокритериальных задачах оптимизации при использовании логического критерия оптимальности.
Сущность обыкновенных дифференциальных уравнений, описание их общего вида и основные правила решения. Понятие условия Коши, его применение. Роль дифференциальных уравнений в решении прикладных задач. Порядок нахождения уравнения кривой, основные методы.
Основатели символического (операционного) исчисления. Оригиналы и изображения функций по Лапласу. Основные теоремы операционного исчисления. Дифференцирование изображения. Интегрирование оригинала и изображения. Отыскание оригинала по изображению.
Вычисление площади плоских фигур при помощи интегралов. Нахождение объема тела, длины дуги, площади поверхности вращения. Определение статических моментов, центра тяжести плоских фигур, координат центра тяжести кривых с помощью определенного интеграла.
Понятие неопределенного интеграла и его свойства, метод подстановки и интегрирования. Формула Ньютона-Лейбница, замена переменной в определенном интеграле. Площадь плоской фигуры в декартовых координатах, расчет объема тела по площади заданного сечения.
Кинематические и динамические обратные задачи сейсморазведки. Вероятность схождения градиентных методов к глобальному экстремуму. Применение аппроксимации в методе дифференциальной эволюции. Использование параллельных вычислений в методах оптимизации.
Понятие функции и основные подходы к определению ее сущности, место и значение данной категории в математической науке. Функциональное описание реальных процессов: золотое правило механики, информационный бум и звездный график, теория реальных газов.
Рассмотрение аппроксимации трех классических в теории трещин случаев на основе ортогональных полиномов Чебышева. Аналитическая модель полей напряжений в вершине трещины, возникающей в периодическом и квазипериодическом композитах. Трещина Гриффитса.
Ознакомление с примерами решений дифференциальных уравнений. Характеристика особенностей применения преобразований Лапласа. Исследование процесса записи решений дифференциальных уравнений при помощи свертки. Рассмотрение формулы Грина и Дюамеля.
Определение процента учащихся, владеющих математикой. Развитие познавательной активности учащихся. Теория пределов и дифференциальных исчислений. Таблица производных основных элементарных функций. Методы решения неравенств. Понятие критической точки.
Определение понятия производной. Изучение правил и формул дифференцирования. Анализ геометрического смысла производной. Построение уравнения касательной и нормали к графику функции, угла между ними. Решение планиметрических и стереометрических задач.
Экономический смысл производной и сущность дифференциального исчисления. Применение производной при решении задач по экономической теории. Использование производной в предельном анализе, описание экономических законов с помощью математических формул.
Исследование функций при помощи производных и построение графиков. Необходимые и достаточные условия возрастания и убывания функции. Теорема и ее доказательство. Применение теоремы для убывающих функций. Подробное объяснение и решение задач.
Превентивные программы, направленные на модификацию поведения людей как метод профилактики распространения эпидемии вируса иммунодефицита человека. Математическая модель оценки риска заражения ВИЧ в результате рискованного сексуального поведения.
Сущность истории создания теории графов. Исследование задачи о Кенигсбергских мостах. Особенность изучения хроматических многочленов. Результаты работы жадного алгоритма при выборе разных порядков вершин. Анализ параллельных и распределенных систем.
Значение теоремы Дж. Чевы и Менелая в золотом фонде древнегреческой математики. Сравнительный анализ в эффективности применение этих теорем по сравнению с другими способами решения планиметрических задач. Доказательство теоремы о биссектрисе угла.
Решение задач с параметрами – одна из сложных тем курса алгебры средней школы. Настоящая статья посвящена исследованию квадратных уравнений и сводящихся к ним систем уравнений, содержащих параметр, на некоторой области допустимых значений переменной.
Решение квадратных уравнений с параметром. Краткие сведения о жизни и деятельности Франсуа Виета. Разработка им тригонометрии и приложение ее к решению алгебраических уравнений. Введение буквенного исчисления, изучение не чисел, а действий над ними.
Пифагор как великий древнегреческий ученый, математик и философ, анализ биографии. Особенности применения теоремы Пифагора в строительстве. Рассмотрение основных способов вычисления стороны прямоугольных треугольников по двум известным сторонам.
Уязвимость объектов и территорий, оценка вероятности разрушения, перерастания аварийных ситуаций в аварию. Вероятностный анализ безопасности объектов со специальными системами безопасности. Оценка риска для людей при воздействии негативных факторов.
Изучение игры в нормальной форме, участниками которой являются преподаватель и учащийся высшего учебного заведения. Рассмотрение процесса формирования матрицы выигрышей. Анализ теории игр — математического метода изучения оптимальных стратегий в играх.
Терминология и свойства тройных интегралов, вычисление с помощью массы неоднородного тела, а также декартовых, цилиндрических и сферических координат. Применение тройных интегралов для расчета координат центра тяжести, инерции и кинетической энергии тела.
Разработка методов моделирования для управления переключаемыми производственными процессами на основе формализма гибридных систем. Характеристика горных работ как элементов задач производственного планирования при открытой разработке месторождений.
Определение факторов риска в финансовой и экономической сферах по правилу Т. Байеса, построение модели инфляции цен. Использование родословной для расчета вероятностей в генетическом прогнозировании и тестировании. Байесовский анализ риска заболевания.
Определение цепных дробей, их свойства и примеры. Представление действительных чисел цепными дробями общего вида. Золотое сечение – гармоническая пропорция, история данного понятия. Расчёт его числа при помощи ряда Фибоначчи и с помощью цепных дробей.
Виды интегралов и их вычисление, их применение к решению прикладных задач. Нахождение площадей, ограниченных различными кривыми, и объемов, ограниченных различными поверхностями с помощью интегралов. Применение криволинейных и поверхностных интегралов.
