Применение производных к исследованию функций и построению графиков
Исследование функций при помощи производных и построение графиков. Необходимые и достаточные условия возрастания и убывания функции. Теорема и ее доказательство. Применение теоремы для убывающих функций. Подробное объяснение и решение задач.
Рубрика | Математика |
Вид | лекция |
Язык | русский |
Дата добавления | 05.03.2009 |
Размер файла | 29,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Лекция № 6. ПРИМЕНЕНИЕ ПРОИЗВОДНЫХ К ИССЛЕДОВАНИЮ ФУНКЦИЙ И ПОСТРОЕНИЮ ГРАФИКОВ
НЕОБХОДИМЫЕ И ДОСТАТОЧНЫЕ УСЛОВИЯ ВОЗРАСТАНИЯ И УБЫВАНИЯ ФУНКЦИИ
Вспомним сначала определения возрастающей и убывающей функций.
Функция y=f(x), определенная на некотором отрезке [a, b] (интервале (a, b)), называется возрастающей на этом отрезке, если большему значению аргумента x из [a, b] соответствует большее
значение функции, то есть если x1 < x2, то f(x1) < f(x2).
Функцияy=f(x) называется убывающей на некотором отрезке [a, b], если меньшему значению аргумента x из [a, b]соответствует большее значение функции, то есть если
x1 < x2, то f(x1) > f(x2).
Функция, только возрастающая или только убывающая на отрезке, называется монотонной на этом отрезке.
Функция y=f(x) называется постоянной на некотором отрезке [a, b], если при изменении аргумента x она принимает одни и те же значения.
Рассмотрим график функции изображенной на рисунке и определим промежутки возрастания и убывания функции.
(-?, a), (c, +?) - убывает;
(a, b) - постоянная;
(b, c) - возрастает.
Применим понятие производной для исследования возрастания и убывания функции.
Теорема 1. (Необходимое и достаточное условия возрастания функции)
1. Если дифференцируемая функция y=f(x) возрастает на [a, b], то ее производная неотрицательна на этом отрезке, f '(x)? 0.
2. Обратно. Если функция y=f(x) непрерывна на [a, b], дифференцируема на (a, b) и ее производная положительна на этом отрезке,f ' (x)? 0 для a<x<b, то f(x) возрастает на[a, b].
Доказательство.
1.Докажем первую часть теоремы. Итак, пусть функция y=f(x) возрастает на [a, b]. Зафиксируем на этом отрезке произвольную точку x, придадим ей приращение Дx. Тогда если Дx>0, то x<x+Дx. Поэтому по определению возрастающей функции f(x)<f(x+Дx), то есть f(x+Дx) - f(x)>0. Но тогда и
Аналогично, если Дx<0, то x>x+Дx и значит f(x+Дx)-f(x)<0, а
Переходя в этом равенстве к пределу при Дx>0, получим
, то есть f '(x)?0.
2.Докажем вторую часть теоремы. Пусть f '(x)>0при всех x ? (a,b). Рассмотрим два любых значения x1 и x2 таких, что x1 < x2. Нужно доказать, что f(x1)< f(x2). По теореме Лагранжа существует такое число c ? (x1, x2), что . По условию f '(x)>0, x1 - x2>0? , а это и значит, что f(x) - возрастающая функция.
Аналогичная теорема имеет место и для убывающих функций.
Теорема 2. Если f(x) убывает на[a,b], то на этом отрезке. Если на (a; b), то f(x) убывает на [a, b],в предположении, чтоf(x) непрерывна на [a, b].
Доказанная теорема выражает очевидный геометрический факт. Если на [a, b] функция возрастает, то касательная к кривой y=f(x) в каждой точке этого отрезке образует острый угол с осью Ox или горизонтальна, т.е. tga?0, а значит f '(x)?0.
Аналогично иллюстрируется и вторая часть теоремы.
Таким образом, возрастание и убывание функции характеризуется знаком ее производной. Чтобы найти на каком промежутке функция возрастает или убывает, нужно определить, где производная этой функции только положительна или только отрицательна, то есть решить неравенства f '(x)>0 - для возрастания или f '(x)<0 - для убывания.
Примеры. Определить интервалы монотонности функции.
1. . Область определения заданной функции
D(y) = (-?; 0)?(0; +?).
.
Следовательно, f(x) - убывает на (-?; 0) и (0; +?).
2.
Найдем промежутки, на которых производная заданной функции положительна или отрицательна методом интервалов.
Итак, f(x) - убывает на (-?; -1] и [1; +?), возрастает на отрезке [-1; 1].
3.
.
Используя метод интервалов, получим f(x) убывает на (0; 1) и (1; e], возрастает на [e; +?)
Подобные документы
Условия существования предела в точке. Расчет производных функции, заданной параметрически. Нахождение точки экстремума, промежутков возрастания и убывания функций, выпуклости вверх и вниз. Уравнение наклонной асимптоты. Точка локального максимума.
курсовая работа [836,0 K], добавлен 09.12.2013Нахождение пределов функций. Определение значения производных данных функций в заданной точке. Проведение исследования функций с указанием области определения и точек разрыва, экстремумов и асимптот. Построение графиков функций по полученным данным.
контрольная работа [157,0 K], добавлен 11.03.2015Пределы функций и их основные свойства, операция предельного перехода, бесконечно малые функции. Производная функции, важнейшие правила дифференцирования, правило Лопиталя. Применение дифференциала функции в приближенных вычислениях, построение графиков.
методичка [335,2 K], добавлен 18.05.2010Изучение способов нахождения пределов функций и их производных. Правило дифференцирования сложных функций. Исследование поведения функции на концах заданных промежутков. Вычисление площади фигуры при помощи интегралов. Решение дифференциальных уравнений.
контрольная работа [75,6 K], добавлен 23.10.2010Исследование функции на непрерывность. Определение производных показательной функции первого и второго порядков. Определение скорости и ускорения материальной точки, движущейся прямолинейно по закону. Построение графиков функций, интервалов выпуклости.
контрольная работа [180,3 K], добавлен 25.03.2014Основные правила преобразования графиков на примерах элементарных функций: преобразование симметрии, параллельный перенос, сжатие и растяжение. Построение графиков сложных функций с помощью последовательных преобразований графиков элементарных функций.
презентация [2,4 M], добавлен 16.11.2010Понятие производной, ее геометрический и физический смысл, дифференциал. Исследование функций и построение графиков. Разложение на множители, упрощение выражений. Решение неравенств, систем уравнений и доказательство тождеств. Вычисление пределов функции.
контрольная работа [565,5 K], добавлен 16.11.2010Построение графиков функций F(x), симметричное их отбражение относительно оси координат ОХ, ОУ, при значениях -F, -x. Особенности построения графиков функций и симметричное отображение относительно осей координат: f(x)+A; f(x+а); kf(x); |f(x)|; |f(|x|)|.
контрольная работа [82,1 K], добавлен 18.03.2010Понятие и основные свойства обратной функции. Нахождение функции, обратной данной. Область определения функции. Обратимость монотонной функции. Построение графиков функций и определение их свойств. Симметричность графиков функций относительно прямой у=х.
презентация [98,6 K], добавлен 18.01.2015Понятие функции в древнем мире: Египет, Вавилон, Греция. Графическое изображение зависимостей, история возникновения. Вклад в развитие графиков функций Рене Декартом. Определение функций: понятие и способы задания. Методы построения графиков функций.
реферат [3,5 M], добавлен 09.05.2009