• Порядок определения производной сложной функции. Сущность и процесс расчета инвариантности формы первого дифференциала. Характеристика производной обратной функции. Особенности логарифмической производной, алгоритм вычисления. Дифференцирование функции.

    лекция (82,6 K)
  • Основные правила дифференцирования. Производная сложной функции. Теорема об обратной функции. Таблица производных сложной функции. Дифференцирование функций, заданных параметрически, дифференциал функции. Понятие логарифмического дифференцирования.

    презентация (218,1 K)
  • Рассмотрение задач, приводящих к понятию производной. Механический и геометрический смысл производной. Уравнение касательной и нормали к плоской кривой. Производные тригонометрической, логарифмической, степенной, сложной функций, высших порядков.

    шпаргалка (140,2 K)
  • Геометрический смысл производной. Зависимость между дифференцируемостью и непрерывностью функции. Таблица элементарных производных. Признаки постоянства, возрастания и убывания функций. Максимум и минимум функции. Признаки существования экстремума.

    контрольная работа (235,7 K)
  • Рассмотрение функции как одной из основных определений математики, изучение её истории. Исследование основных понятий производной. Характеристика геометрического и физического смысла производной. Определение правил логарифмического дифференцирования.

    реферат (468,1 K)
  • Определение производных высших порядков. Дифференцирование функции на определенном отрезке. Нахождение производной высшего порядка от данной функции. Механический смысл второй производной. Ускорение движения точки. Скорость как производная.

    лекция (20,4 K)
  • Производная n-го порядка как производная от производной n-1-го порядка, направления и основные этапы исследования ее характерных свойств и признаков. Вторая производная по времени как скорость изменения скорости, или ускорение, в момент времени.

    презентация (86,8 K)
  • Построение и анализ многочлена Тейлора. Примеры разложения функции по формуле Маклорена. Степенной порядок малости. Определение степени роста бесконечно большой величины в окрестности точки разрыва. Расчёт асимптоты графика функции на бесконечности.

    презентация (1,7 M)
  • Разложение функции по формуле Маклорена и в ряд Тейлора. Степенной порядок малости. Рост бесконечно большой в окрестности точки разрыва. Разложение по формуле Маклорена в окрестности бесконечно удаленной точки. Асимптоты графика функции на бесконечности.

    презентация (852,6 K)
  • Возникновение дифференциальной геометрии. Доказательство теорем о пределах. Исследование функции на экстремумы, свойства непрерывных функций и производные. Теоремы о дифференцируемых функциях. Биографии ученых, внёсших вклад в развитие дифференциалов.

    курсовая работа (2,7 M)
  • Теорема о непрерывности производных недифференцируемых функций. Определение координат в окрестности точки. Частные приращения по переменной и образованной от существующих пределов. Понятие дифференцируемости и производной сложной формулы двух аргументов.

    лекция (164,9 K)
  • Определения дифференцирования в линейных пространствах. Связь производных Фреше и Гато. Необходимое условие экстремума функции, формула конечных приращений и приложения. Понятия теории множеств, формула конечных приращений и следствие теоремы Лагранжа.

    курсовая работа (274,6 K)
  • Теория формальных степенных рядов. Алгебра Коши, операция подстановки одного степенного ряда в другой. Понятие экспоненциального ряда. Основной принцип теории производящих функций. Производящие функции числа основных комбинаторных объектов и выборок.

    курсовая работа (329,8 K)
  • Значение арифметики как науки. Изучение действий над целыми и дробными числами, методов решения задач, сводящихся к сложению, вычитанию, умножению и делению. История развития арифметических знаний. Теории великих математиков: Пифагора, Архимеда, Евклида.

    реферат (55,1 K)
  • Понятие и история формирования римских цифр, их отличительные особенности и правила использования. Схема древнего пальцевого счета на счетной доске абак, его закономерности и применение. Другие воплощения данного метода: японский соробан, русские счеты.

    презентация (548,2 K)
  • Оценка раздела математики, который можно охарактеризовать как обобщение и расширение арифметики. Обзор происхождения алгебры на земле. Исследование её развития в разных странах со временем. Определение назначения алгебры и её применения в жизни человека.

    реферат (38,2 K)
  • Направления и основные этапы исследования числового ряда, названного "Промежуточным". Основные элементы и принципы их взаимодействия. Изучение наиболее простых из рекуррентных формул, их доказательство. Свойства ряда и их обоснование на практике.

    статья (272,4 K)
  • Общее понятие интервальной арифметики — математической структуры, которая для вещественных интервалов определяет операции, аналогичные обычным арифметическим. Ее реализация с помощью электронных таблиц (Microsoft Excel, Calc), C++, CLIPS; примеры расчета.

    статья (419,2 K)
  • Характеристика свойства полей: потенциальное, соленоидальное и гармоническое (уравнение Лапласа) векторное поле; векторный потенциал поля; центральные скалярные и векторные поля. Задачи Дирихле, Неймана. Построение векторных полей по дивергенции и ротору.

    реферат (402,8 K)
  • Вивчення сучасних різновидів силогізму. Дедуктивний умовивід в якому висновок здійснюється із двох категоричних суджень на основі співвідношення дескриптивних термінів. Розгляд способів обґрунтування спеціальних правил фігур категоричного силогізму.

    реферат (471,3 K)
  • Формування в учнів початкової школи розуміння цілого та його частин. Розв'язування задач, пов'язаних зі знаходженням частини числа та числа за відомою його частиною. Дроби та їх зображення. Знаходження дробу від числа та числа за величиною його дробу.

    презентация (5,4 M)
  • Геометричний образ стану динамічної системи. Загальні підходи до її графічного та аналітичного опису. Стійкість системи. Режими її функціонування і умови існування управління. Кількість ступенів свободи. Фазовий портрет функції у двовимірному просторі.

    лабораторная работа (51,7 K)
  • Доказательство теоремы Ферма с использованием метода замены переменных в уравнениях, применение которого доказывает, что теорема не имеет решения в целых положительных числах, а требует применение дробных чисел в одном или нескольких своих переменных.

    творческая работа (34,9 K)
  • Множина максимальних ідеалів різних алгебр аналітичних функцій на банаховому просторі. Математичні операції з цілими відношеннями обмеженого типу. Побудови і дослідження аналогів положень Харді на одиничній кулі. Групи симетрії множини нулів поліномів.

    автореферат (69,6 K)
  • Функция Юнга и ее свойства. Пространство Орлича и норма Амемии. Полнота пространства Орлича. Критерии сходимости и фундаментальности последовательности функций. Привлечение нетривиальных сведений из выпуклого анализа. Теория нормированных пространств.

    статья (238,8 K)
  • Изучение структуры пространств модулярных форм, содержащих мультипликативные эта-произведения с единичным характером. Нахождение размерности и базиса пространств модулярных форм по формуле Коэна-Остерле, поведение функций в параболических вершинах.

    статья (425,9 K)
  • Определение многогранников, их примеры в архитектуре (египетская пирамида), искусстве, животном мире. Их типы: тетраэдр, гексаэдр, октаэдр, икосаэдр, додекаэдр. Количество граней, ребер и вершин в данных фигурах. История правильных многогранников.

    презентация (3,3 M)
  • Случайные события и предмет теории вероятностей. Классическое определение вероятности. Исследование понятия "элементарный исход". Три основные вида комбинации событий. Наглядный пример вероятностной модели? Аксиоматический метод А.Н. Колмогорова.

    презентация (238,1 K)
  • Вероятность случайного события - положительное число, заключенное между нулем и единицей. Пространство элементарных событий – множество исходов испытания, которые могут появиться при его проведении. Характеристика основных аксиом теории вероятности.

    курсовая работа (30,0 K)
  • Общая характеристика простых и составных чисел; необходимость ознакомления учеников с таблицей простых чисел. Ключевые этапы урока. Ключевые отличия составных и простых чисел. Основные вопросы, помогающие ученикам скорее закрепить изученный материал.

    контрольная работа (15,9 K)