Порядок определения производной сложной функции. Сущность и процесс расчета инвариантности формы первого дифференциала. Характеристика производной обратной функции. Особенности логарифмической производной, алгоритм вычисления. Дифференцирование функции.
- 5192. Производная функции
Основные правила дифференцирования. Производная сложной функции. Теорема об обратной функции. Таблица производных сложной функции. Дифференцирование функций, заданных параметрически, дифференциал функции. Понятие логарифмического дифференцирования.
- 5193. Производная функции
Рассмотрение задач, приводящих к понятию производной. Механический и геометрический смысл производной. Уравнение касательной и нормали к плоской кривой. Производные тригонометрической, логарифмической, степенной, сложной функций, высших порядков.
- 5194. Производная функция
Геометрический смысл производной. Зависимость между дифференцируемостью и непрерывностью функции. Таблица элементарных производных. Признаки постоянства, возрастания и убывания функций. Максимум и минимум функции. Признаки существования экстремума.
Рассмотрение функции как одной из основных определений математики, изучение её истории. Исследование основных понятий производной. Характеристика геометрического и физического смысла производной. Определение правил логарифмического дифференцирования.
Определение производных высших порядков. Дифференцирование функции на определенном отрезке. Нахождение производной высшего порядка от данной функции. Механический смысл второй производной. Ускорение движения точки. Скорость как производная.
Производная n-го порядка как производная от производной n-1-го порядка, направления и основные этапы исследования ее характерных свойств и признаков. Вторая производная по времени как скорость изменения скорости, или ускорение, в момент времени.
Построение и анализ многочлена Тейлора. Примеры разложения функции по формуле Маклорена. Степенной порядок малости. Определение степени роста бесконечно большой величины в окрестности точки разрыва. Расчёт асимптоты графика функции на бесконечности.
Разложение функции по формуле Маклорена и в ряд Тейлора. Степенной порядок малости. Рост бесконечно большой в окрестности точки разрыва. Разложение по формуле Маклорена в окрестности бесконечно удаленной точки. Асимптоты графика функции на бесконечности.
Возникновение дифференциальной геометрии. Доказательство теорем о пределах. Исследование функции на экстремумы, свойства непрерывных функций и производные. Теоремы о дифференцируемых функциях. Биографии ученых, внёсших вклад в развитие дифференциалов.
- 5201. Производные функций
Теорема о непрерывности производных недифференцируемых функций. Определение координат в окрестности точки. Частные приращения по переменной и образованной от существующих пределов. Понятие дифференцируемости и производной сложной формулы двух аргументов.
- 5202. Производные функций
Определения дифференцирования в линейных пространствах. Связь производных Фреше и Гато. Необходимое условие экстремума функции, формула конечных приращений и приложения. Понятия теории множеств, формула конечных приращений и следствие теоремы Лагранжа.
- 5203. Производящие функции
Теория формальных степенных рядов. Алгебра Коши, операция подстановки одного степенного ряда в другой. Понятие экспоненциального ряда. Основной принцип теории производящих функций. Производящие функции числа основных комбинаторных объектов и выборок.
Значение арифметики как науки. Изучение действий над целыми и дробными числами, методов решения задач, сводящихся к сложению, вычитанию, умножению и делению. История развития арифметических знаний. Теории великих математиков: Пифагора, Архимеда, Евклида.
Понятие и история формирования римских цифр, их отличительные особенности и правила использования. Схема древнего пальцевого счета на счетной доске абак, его закономерности и применение. Другие воплощения данного метода: японский соробан, русские счеты.
Оценка раздела математики, который можно охарактеризовать как обобщение и расширение арифметики. Обзор происхождения алгебры на земле. Исследование её развития в разных странах со временем. Определение назначения алгебры и её применения в жизни человека.
- 5207. Промежуточный ряд
Направления и основные этапы исследования числового ряда, названного "Промежуточным". Основные элементы и принципы их взаимодействия. Изучение наиболее простых из рекуррентных формул, их доказательство. Свойства ряда и их обоснование на практике.
Общее понятие интервальной арифметики — математической структуры, которая для вещественных интервалов определяет операции, аналогичные обычным арифметическим. Ее реализация с помощью электронных таблиц (Microsoft Excel, Calc), C++, CLIPS; примеры расчета.
Характеристика свойства полей: потенциальное, соленоидальное и гармоническое (уравнение Лапласа) векторное поле; векторный потенциал поля; центральные скалярные и векторные поля. Задачи Дирихле, Неймана. Построение векторных полей по дивергенции и ротору.
Вивчення сучасних різновидів силогізму. Дедуктивний умовивід в якому висновок здійснюється із двох категоричних суджень на основі співвідношення дескриптивних термінів. Розгляд способів обґрунтування спеціальних правил фігур категоричного силогізму.
Формування в учнів початкової школи розуміння цілого та його частин. Розв'язування задач, пов'язаних зі знаходженням частини числа та числа за відомою його частиною. Дроби та їх зображення. Знаходження дробу від числа та числа за величиною його дробу.
- 5212. Простір станів системи
Геометричний образ стану динамічної системи. Загальні підходи до її графічного та аналітичного опису. Стійкість системи. Режими її функціонування і умови існування управління. Кількість ступенів свободи. Фазовий портрет функції у двовимірному просторі.
Доказательство теоремы Ферма с использованием метода замены переменных в уравнениях, применение которого доказывает, что теорема не имеет решения в целых положительных числах, а требует применение дробных чисел в одном или нескольких своих переменных.
Множина максимальних ідеалів різних алгебр аналітичних функцій на банаховому просторі. Математичні операції з цілими відношеннями обмеженого типу. Побудови і дослідження аналогів положень Харді на одиничній кулі. Групи симетрії множини нулів поліномів.
Функция Юнга и ее свойства. Пространство Орлича и норма Амемии. Полнота пространства Орлича. Критерии сходимости и фундаментальности последовательности функций. Привлечение нетривиальных сведений из выпуклого анализа. Теория нормированных пространств.
Изучение структуры пространств модулярных форм, содержащих мультипликативные эта-произведения с единичным характером. Нахождение размерности и базиса пространств модулярных форм по формуле Коэна-Остерле, поведение функций в параболических вершинах.
Определение многогранников, их примеры в архитектуре (египетская пирамида), искусстве, животном мире. Их типы: тетраэдр, гексаэдр, октаэдр, икосаэдр, додекаэдр. Количество граней, ребер и вершин в данных фигурах. История правильных многогранников.
Случайные события и предмет теории вероятностей. Классическое определение вероятности. Исследование понятия "элементарный исход". Три основные вида комбинации событий. Наглядный пример вероятностной модели? Аксиоматический метод А.Н. Колмогорова.
Вероятность случайного события - положительное число, заключенное между нулем и единицей. Пространство элементарных событий – множество исходов испытания, которые могут появиться при его проведении. Характеристика основных аксиом теории вероятности.
Общая характеристика простых и составных чисел; необходимость ознакомления учеников с таблицей простых чисел. Ключевые этапы урока. Ключевые отличия составных и простых чисел. Основные вопросы, помогающие ученикам скорее закрепить изученный материал.
