Применение теорем Чевы и Менелая для решения планиметрических задач

Значение теоремы Дж. Чевы и Менелая в золотом фонде древнегреческой математики. Сравнительный анализ в эффективности применение этих теорем по сравнению с другими способами решения планиметрических задач. Доказательство теоремы о биссектрисе угла.

Рубрика Математика
Вид контрольная работа
Язык русский
Дата добавления 30.09.2013
Размер файла 1,4 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Рациональность решения задач с помощью теорем Чевы и Менелая, чем их решение другими способами, например векторным. Доказательство теорем, дополнительное построение. Трудности, связанные с освоением этих теорем, оправданные применением при решении задач.

    контрольная работа [388,3 K], добавлен 05.05.2019

  • Биография Менелая Александрийского - древнегреческого астронома и математика. Формулировка и доказательство теоремы Менелая для плоского случая, при переносе центральным проектированием на сферу. Применение теоремы для решения прикладных задач.

    презентация [1,8 M], добавлен 17.11.2013

  • Вивчення теорем Чеви та Менелая на площині та в просторі, доведення нетривіальних наслідків цих теорем та розв’язання задач за їх допомогою. Застосування Теореми Менелая при доведенні теорем (наприклад, теорем Дезарга, Паппа, Паскаля, Гаусса та інших).

    дипломная работа [4,0 M], добавлен 12.08.2010

  • Систематизация различных методов решения планиметрических задач. Обоснование рациональности решения планиметрической задачи методами дополнительных построений, подобия треугольников, векторного аппарата, соотношения углов и тригонометрической замены.

    реферат [727,1 K], добавлен 19.02.2014

  • Путь Пифагора к знаниям, источники его учения и научная деятельность. Формулировка теоремы Пифагора, ее простейшее доказательство на примере равнобедренного прямоугольного треугольника. Применение изучаемой теоремы для решения геометрических задач.

    презентация [174,3 K], добавлен 18.12.2012

  • Истоки, понятие аналитической геометрии. Метод координат на плоскости. Аффинная и Декартова система координат на плоскости, прямая и окружность. Аналитическое задание геометрических фигур. Применение аналитического метода к решению планиметрических задач.

    курсовая работа [1,2 M], добавлен 12.05.2009

  • Формулирование и доказательство великой теоремы Ферма методами элементарной алгебры с использованием метода замены переменных для показателя степени n=4. Необходимые условия решения уравнения. Отсутствие решения теоремы в целых положительных числах.

    творческая работа [27,7 K], добавлен 17.10.2009

  • Основные теоремы и понятия дифференциального исчисления, связи между свойствами функции и её производных (или дифференциалов); применение математических методов в естествознании и технике. Решение уравнений и неравенств с помощью теорем Ролля и Лагранжа.

    курсовая работа [609,9 K], добавлен 09.12.2011

  • Решение уравнения теоремы Пифагора в целых числах. Доказательство теоремы Ферма в целых положительных числах при четных показателях степени. Применение методов решения параметрических уравнений и замены переменных. Доказательство теоремы Пифагора.

    доклад [26,6 K], добавлен 17.10.2009

  • Применение граф-схем - кратчайший путь доказательства теорем. Нахождение искомых величин путем рассуждений. Алгоритм решения логических задач методами таблицы и блок-схемы. История появления теории траекторий (математического бильярда), ее преимущества.

    реферат [448,4 K], добавлен 21.01.2011

  • Выполнение доказательства теорем Пифагора, Ферма и гипотезы Биля методом параметрических уравнений в сочетании с методом замены переменных. Уравнение теоремы Ферма как частный вариант уравнения гипотезы Биля, а уравнение теоремы Ферма – теоремы Пифагора.

    творческая работа [64,8 K], добавлен 20.05.2009

  • Представление великой теоремы Ферма как диофантового уравнения. Использование для ее доказательства метода замены переменных. Невозможность решения теоремы в целых положительных числах. Необходимые условия и значения чисел для решения, анализ уравнений.

    статья [35,2 K], добавлен 21.05.2009

  • Доказательство теоремы Ферма методами теоремы арифметики, элементарной алгебры с использованием методов решения параметрических уравнений для четных и нечетных показателей степени. Теорема о разложении на простые множители целых составных чисел.

    научная работа [22,6 K], добавлен 12.06.2009

  • История создания теоремы. Краткая биографическая справка из жизни Пифагора Самосского. Основные формулировки теоремы. Доказательство Евклида, Хоукинса. Доказательство через: подобные треугольники, равнодополняемость. Практическое применение теоремы.

    презентация [3,6 M], добавлен 21.10.2011

  • Основополагающие понятия теории графов и теории групп. Определение эквивалентности, порождаемой группой подстановок, и доказательство леммы Бернсайда о числе классов такой эквивалентности. Сущность перечня конфигурации, доказательство теоремы Пойа.

    курсовая работа [682,9 K], добавлен 20.05.2013

  • Доказательство великой теоремы Ферма для n=3 методами элементарной алгебры с использованием метода решения параметрических уравнений. Диофантово уравнение, решение в целых числах, отсутствие решения в целых положительных числах при показателе степени n=3.

    творческая работа [23,8 K], добавлен 17.10.2009

  • Формулировки и доказательства китайской теоремы об остатках. Доказательство с помощью метода математической индукции. Конструктивный метод доказательства. Основные алгоритмы поиска решения. Применение китайской теоремы об остатках к открытию сейфа.

    курсовая работа [1,0 M], добавлен 08.01.2022

  • Доказательство великой теоремы Ферма методами теоремы арифметики, элементарной алгебры с использованием методов решения параметрических уравнений и методов замены переменных. Теорема о единственности разложения на простые множители целых составных чисел.

    статья [29,4 K], добавлен 21.05.2009

  • Метод замены переменной при решении задач. Тригонометрическая подстановка. Решение уравнений. Решение систем. Доказательство неравенств. Преподавание темы "Применение тригонометрической подстановки для решения алгебраических задач".

    дипломная работа [461,7 K], добавлен 08.08.2007

  • Доказательство теорем Силова о конечных группах, которые представляют собой неполный вариант обратной теоремы к теореме Лагранжа и для некоторых делителей порядка группы G гарантируют существование подгрупп такого порядка. Нахождение силовских р-подгрупп.

    курсовая работа [161,3 K], добавлен 31.03.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.