Применение показательной и логарифмической функции в описании реальных процессов

Понятие функции и основные подходы к определению ее сущности, место и значение данной категории в математической науке. Функциональное описание реальных процессов: золотое правило механики, информационный бум и звездный график, теория реальных газов.

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 04.02.2016
Размер файла 107,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Реферат

Применение показательной и логарифмической функции в описании реальных процессов

1. Определение функции

математический логарифмической механика

Начиная с XVII в. одним из важнейших понятий является понятие функции. Оно сыграло и поныне играет большую роль в познании реального мира.

Идея функциональной зависимости восходит к древности, она содержится уже в первых математически выраженных соотношениях между величинами, в первых правилах действий над числами, в первых формулах для нахождения площади и объема тех или иных фигур.

Те вавилонские ученые, которые 4-5 тысяч лет назад нашли для площади S круга радиусом r формулу S=3r2 (грубо приближенную), тем самым установили, пусть и не сознательно, что площадь круга является функцией от его радиуса. Таблицы квадратов и кубов чисел, также применявшиеся вавилонянами, представляют собой задания функции.

Однако явное и вполне сознательное применение понятия функции и систематическое изучение функциональной зависимости берут свое начало в XVII в. в связи с проникновением в математику идеи переменных. В «Геометрии» Декарта и в работах Ферма, Ньютона и Лейбница понятие функции носило по существу интуитивный характер и было связано либо с геометрическими, либо с механическими представлениями: ординаты точек кривых - функции от абсцисс (х); путь и скорость - функции от времени (t) и тому подобное.

Четкого представления понятия функции в XVII в. еще не было, путь к первому такому определению проложил Декарт, который систематически рассматривал в своей «Геометрии» лишь те кривые, которые можно точно представить с помощью уравнений, притом преимущественно алгебраических. Постепенно понятие функции стало отождествляться, таким образом, с понятием аналитического выражения - формулы.

Слово «функция» (от латинского functio - совершение, выполнение) Лейбниц употреблял с 1673 г. в смысле роли (величина, выполняющая ту или иную функцию). Как термин в нашем смысле выражение «функция от х» стало употребляться Лейбницем и И. Бернулли; начиная с 1698 г. Лейбниц ввел также термины «переменная» и «константа» (постоянная). Для обозначения произвольной функции от х Иоганн Бернулли применял знак j х, называя j характеристикой функции, а также буквы х или e; Лейбниц употреблял х1, х2 вместо современных f1 (x), f2 (x). Эйлер обозначал через f: х, f: (x + y) то, что мы ныне обозначаем через f (x), f (x + y). Наряду с j Эйлер предлагает пользоваться и буквами F, Y и прочими. Даламбер делает шаг вперед на пути к современным обозначениям, отбрасывая эйлерово двоеточие; он пишет, например, j t, j (t + s).

Явное определение функции было впервые дано в 1718 г. одним из учеников и сотрудников Лейбница, выдающимся швейцарским математиком Иоганном Бернулли: «Функцией переменной величины называют количество, образованное каким угодно способом из этой переменной величины и постоянных».

Леонард Эйлер во «Введении в анализ бесконечных» (1748) примыкает к определению своего учителя И. Бернулли, несколько уточняя его. Определение Л. Эйлера гласит: «Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого количества и чисел или постоянных количеств». Так понимали функцию на протяжении почти всего XVIII в. Даламбер, Лагранж и другие видные математики. Что касается Эйлера, то он не всегда придерживался этого определения; в его работах понятие функции подвергалось дальнейшему развитию в соответствии с запросами математической науки. В некоторых своих произведениях Л. Эйлер придает более широкий смысл функции, понимая ее как кривую, начертанную «свободным влечением руки». В связи с таким взглядом Л. Эйлера на функцию между ним и его современниками, в первую очередь его постоянным соперником, крупным французским математиком Даламбером, возникла большая полемика вокруг вопроса о возможности аналитического выражения произвольной кривой и о том, какое из двух понятий (кривая или формула) следует считать более широким. Так возник знаменитый спор, связанный с исследованием колебаний струны.

В «Дифференциальном исчислении», вышедшем в свет в 1755 г., Л. Эйлер дает общее определение функции: «Когда некоторые количества зависят от других таким образом, что при изменении последних и сами они подвергаются изменению, то первые называются функциями вторых». «Это наименование, - продолжает далее Эйлер, - имеет чрезвычайно широкий характер; оно охватывает все способы, какими одно количество определяется с помощью других». На основе этого определения Эйлера французский математик С.Ф. Лакруа в своем «Трактате по дифференциальному и интегральному исчислению», опубликованном в 1797 г., смог записать следующее: «Всякое количество, значение которого зависит от одного или многих других количеств, называется функцией этих последних независимо от того, известно или нет, какие операции нужно применить, чтобы перейти от них к первому».

Как видно из этих определений, само понятие функции фактически отождествлялось с аналитическим выражением. Новые шаги в развитии естествознания и математики в XIX в. вызвали и дальнейшее обобщение понятия функции.

Большой вклад в решение спора Эйлера, Даламбера, Д. Бернулли и других ученых XVIII в. по поводу того, что следует понимать под функцией, внес французский математик Жан Батист Жозеф Фурье (1768-1830), занимавшийся в основном математической физикой. В представленных им в Парижскую Академию наук в 1807 и 1811 гг., работах по теории распространения тепла в твердом теле Фурье привел и первые примеры функций, которые заданы на различных участках различными аналитическими выражениями.

Из трудов Фурье явствовало, что любая кривая независимо от того, из скольких и каких разнородных частей она составлена, может быть представлена в виде единого аналитического выражения и что имеются также прерывные кривые, изображаемые аналитическим выражением. В своем «Курсе алгебраического анализа», опубликованном в 1821 г., французский математик О. Коши обосновал выводы Фурье. Таким образом, на известном этапе развития физики и математики стало ясно, что приходится пользоваться и такими функциями, для определения которых очень сложно или даже невозможно ограничиться одним лишь аналитическим аппаратом. Последний стал тормозить требуемое математикой и естествознанием расширение понятия функции.

В 1834 г. в работе «Об исчезании тригонометрических строк» Н.И. Лобачевский, развивая вышеупомянутое эйлеровское определение функции в 1755 г., писал: «Общее понятие требует, чтобы функцией от х называть число, которое дается для каждого х и вместе с х постепенно изменяется. Значение функции может быть дано или аналитическим выражением, или условием, которое подает средство испытывать все числа и выбирать одно из них; или, наконец, зависимость может существовать и оставаться неизвестной… Обширный взгляд теории допускает существование зависимости только в том смысле, чтобы числа, одни с другими в связи, принимать как бы данными вместе».

Еще до Лобачевского аналогичная точка зрения на понятие функции была высказана чешским математиком Б. Больцано. В 1837 г. немецкий математик П. Лежен-Дирихле так сформулировал общее определение понятия функции: «у есть функция переменной х (на отрезке a Ј х Ј b), если каждому значению х (на этом отрезке) соответствует совершенно определенное значение у, причем безразлично, каким образом установлено это соответствие - аналитической формулой, графиком, таблицей либо даже просто словами».

Таким образом, примерно в середине XIX в. после длительной борьбы мнений понятие функции освободилось от уз аналитического выражения, от единовластия математической формулы. Главный упор в новом общем определении понятия функции делается на идею соответствия.

Во второй половине XIX в. после создания теории множеств в понятие функции, помимо идеи соответствия, была включена и идея множества. Таким образом, в полном своем объеме общее определение понятия функции формулируется следующим образом: если каждому элементу х множества А поставлен в соответствие некоторый определенный элемент у множества В, то говорят, что на множестве А задана функция у = f (х), или что множество А отображено на множество В. В первом случае элементы х множества А называют значениями аргумента, а элементы у множества В-значениями функции; во втором случае х - прообразы, у - образы. В современном смысле рассматривают функции, определенные для множества значений х, которые, возможно, и не заполняют отрезка a Ј x Ј b, о котором говорится в определении Дирихле. Достаточно указать, например, на функцию-факториал y = n!, заданную на множестве натуральных чисел. Общее понятие функции применимо, конечно, не только к величинам и числам, но и к другим математическим объектам, например к геометрическим фигурам. При любом геометрическом преобразовании (отображении) мы имеем дело с функцией.

Общее определение функций по Дирихле сформировалось после длившихся целый век дискуссий в результате значительных открытий в физике и математике в XVIII и первой половине XIX в. Дальнейшее развитие математической науки в XIX в. основывалось на этом определении, ставшим классическим. Но уже с самого начала XX в. это определение стало вызывать некоторые сомнения среди части математиков. Еще важнее была критика физиков, натолкнувшихся на явления, потребовавшие более широкого взгляда на функцию. Необходимость дальнейшего расширения понятия функции стала особенно острой после выхода в свет в 1930 г. книги «Основы квантовой механики» Поля Дирака, крупнейшего английского физика, одного из основателя квантовой механики. Дирак ввел так называемую дельта-функцию, которая выходит далеко за рамки классического определения функции. В связи с этим советский математик Н.М. Гюнтер и другие ученые опубликовали в 30-40-х годах нашего столетия работы, в которых неизвестными являются не функции точки, а «функции области», что лучше соответствует физической сущности явлений.

В общем виде понятие обобщенной функции было введено французом Лораном Шварцем. В 1936 г. 28-летний советский математик и механик Сергей Львович Соболев первым рассмотрел частный случай обобщенной функции, включающей и дельта-функцию, и применил созданную теорию к решению ряда задач математической физики. Важный вклад в развитие теории обобщенных функций внесли ученики и последователи Л. Шварца - И.М. Гельфанд, Г.Е. Шилов и другие.

Прослеживая исторический путь развития понятия функции невольно приходишь к мысли о том, что эволюция еще далеко не закончена и, вероятно, никогда не закончится, как никогда не закончится и эволюция математики в целом. Новые открытия и запросы естествознания и других наук приведут к новым расширениям понятия функции и других математических понятий. Математика - незавершенная наука, она развивалась на протяжении тысячелетий, развивается в нашу эпоху и будет развиваться в дальнейшем.

Функциональное описание реальных процессов

Почему не бывает животных, какой угодно величины? Почему, например, нет слонов в три раза большего роста, чем существуют, но тех же пропорций? Ответ таков: стань слон в три раза больше, вес его тогда увеличился бы в двадцать семь раз, как куб размера, а площадь сечения костей и, следовательно, их прочность - только в девять раз, как квадрат размера. Прочности костей уже не хватило бы, чтобы выдержать непомерно увеличившийся вес. Такой слон был бы раздавлен собственной тяжестью.

В основу рассуждения положены две строгие математические зависимости. Первая устанавливает соответствие между размерами подобных тел и их объемами: объем изменяется, как куб размера. Вторая связывает размеры подобных фигур и их площади: площадь изменяется, как квадрат размера. Этим выразительным примером мы хотим начать разговор о числовых функциях числового аргумента, которые можно использовать для описания реальных процессов.

Посмотрите, как можно использовать знания математики в русском языке!

Именительный падеж - кто? что?

Родительный падеж - кого? чего?

Дательный падеж - кому? X?

Недостающий вопрос дательного падежа - чему?

2. Чудо английского часового мастера Джон Гаррисон.

Перенесемся на три века вспять. Парусник в открытом море. Как определить долготу места, в котором он находится? Очень просто, если на корабле есть часы, поставленные в порту отправления. Нужно измерить местное время по солнцу и сравнить с показаниями часов. Расхождение пропорционально разнице по долготе между тем пунктом, где находится корабль, и тем, в котором были поставлены часы.

Точный закон этой пропорциональности позволяет вывести простое соотношение: тремстам шестидесяти градусам земной окружности соответствуют двадцать четыре часа, за которые Земля совершает полный оборот вокруг своей оси. Поэтому если часы отстают по сравнению с местным временем на шесть часов, корабль находится на 90° восточнее того места, где были поставлены часы. Спешат на четыре часа - на 60° западнее. Разумеется, для подобного определения долготы нужны очень точные часы.

А как можно требовать точности от маятниковых часов, которыми снабжен парусник? Их ход зависит от длины маятника, а она то и дело меняется: теплый день сменяется прохладной ночью, и во время плавания парусник приближается то к голубым полярным льдам, то к пальмам тропиков. Тепло удлиняет маятник, холод укорачивает. Такова неумолимая реальность.

И все-таки нашелся способ избежать неизбежного зла. Чудо совершил в 1726 году английский часовой мастер Джон Гаррисон. Это удалось ему потому, что он знал функциональную зависимость длины металлического стержня от температуры, до которой стержень нагрет.

Эту функцию описывает прямая линия. Такая зависимость называется линейной. Суть ее в том, что одинаковым приращениям аргумента всегда соответствует одно и то же приращение функции. Иначе говоря, функция изменяется равномерно при равномерном росте аргумента.

В нашем примере равномерному нарастанию температуры соответствует равномерное удлинение стержня. Полное его удлинение пропорционально начальной длине. Но что особенно важно - стержни из разных металлов удлиняются по-разному от одного и того же прироста температуры. Скажем, цинк расширяется примерно в три раза сильнее, чем сталь, этим и воспользовался Гаррисон: он собрал маятник из цинковых и стальных стержней. Общая длина стальных стержней в три раза превышала длину цинковых. Расширяясь при нагревании и сокращаясь при охлаждении, стержни взаимно компенсировали изменения своей длины, и груз маятника оставался на одном и том же расстоянии от точки подвеса.

3. Ключ к небольшой математической проблеме

Отметим, что не всякую функциональную зависимость удается выразить краткой формулой, мы не случайно в качестве примера предоставляем вам, ключ от дверного замка: сейчас он в буквальном смысле слова послужит ключом к небольшой математической проблеме, к которой нас подводит беседа о функциях. Знаете ли вы, как таким ключом открывается дверной замок? Что происходит внутри этого слесарно-механического устройства, когда вы вставляете ключ в замочную скважину и делаете положенное число оборотов?

Чтобы замок открылся, нужно провернуть барабан, в котором сделана скважина. Но этому препятствуют штифты, стоящие тесным строем внутри скважины, скользящие вверх-вниз. Каждый из штифтов нужно поднять на такую высоту, чтобы их верхние торцы оказались вровень с поверхностью барабана. Если они выступят за нее, то войдут в прорезь обоймы, расположенную точно над замочной скважиной; если не достигнут поверхности барабана, то из прорези обоймы находящиеся там штифты вдвинутся в замочную скважину. И в том и в другом случае вращение барабана будет застопорено.

Штифты в замочной скважине поднимает ключ, вдвигаемый в нее. При этом высота каждого штифта, будучи сложена с высотой профиля ключа в соответствующей точке, должна дать в сумме диаметр барабана. Только тогда он провернется.

Ну а причем здесь функция? Да притом, что, с точки зрения математика, вся эта механика есть не что иное, как операция сложения двух функций. Одна из них - это профиль ключа. Другая - линия, очерчивающая верхние торцы штифтов, когда замок заперт.

Операция сложения функций состоит в том, что в каждой точке из общей области их определения к значению одной функции прибавляется значение другой. Тем самым определяется, какое значение в данной точке имеет функция, называемая суммой двух исходных. Секрет дверного замка в том, что в результате сложения двух функций, выраженных профилем ключа и строем штифтов, получается функция-константа, постоянное значение которой равно диаметру барабана

4. Золотое правило механики

Вся богатейшая семья механизмов, окружающих современного человека, начиналась когда-то с семи простых машин. Древние знали рычаг, блок, клин, ворот, винт, наклонную плоскость и зубчатые колеса. Эти нехитрые по теперешним представлениям устройства умножали силу человека. Но, во сколько раз выиграешь в силе - во столько же раз проиграешь в расстоянии. Так гласит золотое правило механики, заключающее в себе теорию семи простых машин.

График, приведенный на этой странице, есть наглядное выражение знаменитого правила. По горизонтальной оси отложена сила, с которой, например, нужно давить на плечо рычага, чтобы поднять заданный груз на заданную высоту. По вертикальной оси - расстояние, которое пройдет при этом точка приложения силы. Линия, выражающая такую функциональную зависимость, называется гиперболой.

Закон обратной пропорциональности глядит на нас и со шкалы радиоприемника. Вы крутите ручку настройки, и стрелка движется вдоль шкалы, на которой два ряда чисел - метры и мегагерцы, длина волн и их частота. Длина волн растет, частота падает. Но присмотритесь: при любом сдвиге стрелки во сколько раз увеличилась длина волны, во столько же раз упала частота.

График гиперболы можно увидеть на лабораторном столе физика, демонстрирующего явления капиллярности. В штативе несколько тонких стеклянных трубочек, расположенных в порядке возрастания диаметров. Известно, что в тонком канале смачивающая жидкость поднимается тем выше, чем меньше его диаметр. Поэтому в самом узком канале жидкость поднялась выше всего, в другом канале, диаметр которого в два раза больше, - в два раза ниже, в третьем, что толще первого в три раза, - в три раза ниже и так далее.

А теперь опустим в эту же жидкость клин, образованный двумя стеклянными пластинками, сомкнутыми по вертикальному ребру. В узкую щель между стеклами жидкость устремится, как в капилляр. Высота ее подъема определится шириной зазора. А он увеличивается равномерно по мере удаления от острия клина. Поэтому свободная поверхность жидкости четко вырисовывает гиперболу - график обратной пропорциональности.

5. Информационный бум

Сейчас много говорят об информационном буме. Поток информации захлестывает: утверждают, что ее количество удваивается каждые десять лет. Изобразим этот процесс наглядно, в виде графика некоторой функции.

Примем объем информации в некоторый год за единицу. Поскольку эта величина послужит нам началом дальнейших построений, отложим ее над началом координат, в которых будет строиться график, по вертикальной оси. Отрезок, вдвое больший, восставим над единичной отметкой горизонтальной оси, считая, что эта отметка соответствует первому десятку лет.

Еще вдвое больший отрезок восставим над точкой «два», соответствующей второму десятку, еще вдвое больший - над точкой «три». Декада за декадой- избранные нами значения аргумента выстроятся по горизонтальной оси в порядке равномерного нарастания, по закону арифметической прогрессии: один, два, три, четыре… Значения функции отложатся над ними, возрастая каждый раз вдвое, - по закону геометрической прогрессии: два, четыре, восемь, шестнадцать…

А что если посмотреть, как нарастал поток информации до того года, который принят за начальный? Столь же равномерно, откладывая единицу за единицей, пройдемся по оси абсцисс влево от начала координат и над отложенными значениями аргумента, будем наносить на график значения функции уже в порядке убывания - вдвое с каждым шагом.

Теперь соединим все нанесенные точки непрерывной гладкой линией - ведь количество информации нарастает от десятилетия к десятилетию плавно, а не скачками. Перед нами график так называемой показательной функции.

Список литературы

1. Лященко Е.И. Изучение функций в курсе математики восьмилетней школы. Минск, 1970 г.

2. Алгебра: учебник для 7 класса общеобразовательных учреждений.\ под ред. С.А. Теляковского - 5-е издание - М. Просвещение, 1997.

3. Алгебра: учебник для 8 класса общеобразовательных учреждений.\ под ред. С.А. Теляковского - 2-е издание - М. Просвещение, 1991.

4. Виленкин Н.Я. и др. Современные основы школьного курса математики. - М. Просвещение, 1980.

5. Блох А.Я., Гусев В.А. и др. Методика преподавания математики в средней школе. - М. Просвещение, 1987.

6. Крамор В.С. Повторяем и систематизируем школьный курс алгебры и начал анализа, Москва, Просвещение, 1990 г.

7. Рыбников К.А. Возникновение и развитие математической науки, Москва, Просвещение, 1987 г.

Размещено на Allbest.ru


Подобные документы

  • Понятия целой и дробной частей действительного числа. Основные свойства функции и ее график. Применение свойств функции y = [x] при решении уравнений и геометрических задач. Описание реальных процессов непрерывными функциями. Решение задач на делимость.

    курсовая работа [487,7 K], добавлен 29.05.2016

  • Понятие и типы математических моделей, критерии их классификации. Примеры использования дифференциальных уравнений при моделировании реальных процессов: рекламная компания, истечение жидкости, водяные часы, невесомость, прогиб балок, кривая погони.

    курсовая работа [410,0 K], добавлен 27.04.2014

  • Анализ основных понятий, утверждений, связанных с показательной и логарифмической функциями в курсе математики. Изучение методик решения типовых задач. Подбор и систематизация задач на нахождение и использование показательной и логарифмической функций.

    курсовая работа [1,5 M], добавлен 20.07.2015

  • Рассмотрение и анализ основных свойств показательной функции: решение задач, способы построения графиков. Понятие и примеры применения гиперболических функций, их роль в различных приложениях математики. Способы нахождения области определения функции.

    контрольная работа [902,6 K], добавлен 01.11.2012

  • Значение понятия математика. Ее роль в науке. Математика как наука основанная на разнообразие математических моделей, задачей которых является отображение реальных событий и явлений. Особенности математического языка. Известные высказывания о математике.

    реферат [21,7 K], добавлен 07.05.2013

  • Использование принципов "золотого сечения" в математике, физике, биологии, астрономии, в архитектуре и других науках и искусствах. Обзор истории и математической сущности золотого сечения, осмысление его роли в современной науке; "математика гармонии".

    реферат [20,3 K], добавлен 24.11.2009

  • Понятие и основные свойства обратной функции. Нахождение функции, обратной данной. Область определения функции. Обратимость монотонной функции. Построение графиков функций и определение их свойств. Симметричность графиков функций относительно прямой у=х.

    презентация [98,6 K], добавлен 18.01.2015

  • Частные случаи производной логарифмической функции. Производная показательной функции, экспоненты, степенной, тригонометрических функций. Производная синуса, косинуса, тангенса, котангенса, арксинуса. Производные обратных тригонометрических функций.

    презентация [332,2 K], добавлен 21.09.2013

  • Производная — основное понятие дифференциального исчисления, характеризующее скорость изменения функции в данной точке. Геометрический и механический смысл приращения функции. Правило дифференцирования, критические точки, экстремум; интегрирование.

    презентация [575,4 K], добавлен 11.09.2011

  • Исследование функции на непрерывность. Определение производных показательной функции первого и второго порядков. Определение скорости и ускорения материальной точки, движущейся прямолинейно по закону. Построение графиков функций, интервалов выпуклости.

    контрольная работа [180,3 K], добавлен 25.03.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.