Некоторые векторные равенства
Исследование основных векторных соотношений, особенности их использования в решении математических задач. Структура системы, полученной в силу единственности разложения вектора. Доказательство причисления равенства к основным векторным соотношениям.
Рубрика | Математика |
Вид | реферат |
Язык | русский |
Дата добавления | 18.06.2015 |
Размер файла | 75,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Некоторые векторные равенства
Среди векторных соотношений можно выделить несколько важных соотношений, называемых здесь основными. Эти основные соотношения являются, образно выражаясь, ключами к решению широкого класса задач.
Основное соотношение. Во всяком треугольнике ЛВС выполняется равенство
(I)
Где М - центроид (точка пересечения медиан) треугольника АВС.
Докажем соотношение (I).
Пусть М - центроид треугольника АВС. Соединим точку М со всеми вершинами треугольника. Прямая МВ пересекает сторону АС треугольника АВС в точке О, являющейся серединой стороны АС. На прямой ВМ откладываем МЕ = ВМ и соединяем точку Е с вершинами А и С. очевидно, что АМСЕ - параллелограмм. Поэтому . Откуда . Так как , то . Ч.т.д.
Задача. Доказать, что если М - центроид треугольника АВС и О - произвольная точка пространства, то выполняется равенство
(1)
Доказательство:
Запишем следующие векторные равенства:
Сложив эти равенства по частям, получаем:
,
откуда
векторный равенство математический
Доказанное равенство также следует отнести к основным векторным соотношениям, так как оно часто используется в решении многих задач.
Основное соотношения. В треугольнике АВС на стороне АС взята точка D так, что АD: DС = m: n.
Тогда имеет месть следующее соотношение:
(II)
Доказательство:
Из треугольника АВС имеем:
.
Ч.т.д.
Задача. Через середину Е медианы СС1 треугольника АВС проведена прямая АЕ, пересекающая сторону ВС в точке F. Вычислить АЕ: ЕF и СF: FВ.
Решение
Введем векторы и . Пусть СF: FВ = m: n. Тогда по формуле (II) имеем:
и (1)
где 0 < х < 1.
С другой стороны, учитывая, что Е - середина медианы СС1 получаем для АЕ следующее выражение:
(2)
В силу единственности разложения вектора по двум векторам из (1) и (2) получаем систему:
(3)
Разделив по частям первое уравнение системы (3) на второе, получаем, что m: n = 1: 2, т.е. СF: FВ = 1: 2.
Сложив по частям уравнение системы (3), находим, что , т.е. AE: EF = 3: 4
Основное соотношение. Если точки М и N делят отрезки АВ и CD соответственно в равных отношениях так, что AM: MB = CN: ND = m: n, то выполняется равенство.
(III)
Доказательство:
Для доказательства равенства (III) мы воспользуемся формулой (II). Запишем, что отрезки АВ и CD могут произвольно располагаться относительно друг друга (например, они могут лежать на скрещивающихся прямых и на прямых, принадлежащих одной плоскости).
Пусть О - произвольная точка, не принадлежащая ни отрезку АВ, ни отрезку CD. Соединим точку О с точками А, М, В, С, N и D и раcсмотрим векторы и .
Имеем:
,
,
Ч. т.д.
Задача. На прямой m даны три точки Р, Q, R, а на прямой m1 - три точки P1, Q1, R1 причем , . Доказать, что середины отрезков PP1, QQ1 и RR1 принадлежат одной прямой.
Решение
Пусть М, N и К - середины отрезков РР1 QQ1 и RR1 соответственно.
На основании (III) запишем следующие векторные равенства:
(1)
(2)
Из (1) и (2) следует, что векторы и коллинеарные. А так как начало одного из них является концом другого, то точки М, N и К принадлежат одной прямой.
IV Основное соотношение. Дан тетраэдр ABCD и в плоскости его грани ABC точка М. Доказать, что для разложения
Выполняется равенство
Доказательство:
Допустим, что точка М лежит внутри треугольника ABC. Проведем через точки А и М прямую, которая пересекает сторону ВС в точке Е. Пусть Е делит сторону ВС в отношении m: n, т.е.
BE: EC = m: n.
Тогда по формуле (II)
Пусть далее точка М делит отрезок АЕ в отношении p: q, т.е. AM: ME = p:q. Тогда
.
Откуда
Ч. т.д.
Размещено на Allbest.ru
Подобные документы
Рациональность решения задач с помощью теорем Чевы и Менелая, чем их решение другими способами, например векторным. Доказательство теорем, дополнительное построение. Трудности, связанные с освоением этих теорем, оправданные применением при решении задач.
контрольная работа [388,3 K], добавлен 05.05.2019Знакомство со средством Microsoft Excel, внутренняя структура и элементы данной программы, ее функциональные особенности и возможности, особенности использования в решении математических задач. Основы теории вероятностей, ее принципы и главные задачи.
контрольная работа [1,5 M], добавлен 16.11.2013Доказательство великой теоремы Ферма методами теоремы арифметики, элементарной алгебры с использованием методов решения параметрических уравнений и методов замены переменных. Теорема о единственности разложения на простые множители целых составных чисел.
статья [29,4 K], добавлен 21.05.2009Теоретические сведения по теме "Признаки равенства треугольников". Методика изучения темы "Признаки равенства треугольников". Тема урока "Треугольник. Виды треугольников". "Свойства равнобедренного и равностороннего треугольников".
курсовая работа [30,5 K], добавлен 11.01.2004Развитие вычислительных умений и навыков при решении задач. Закрепление формул для вычисления площадей геометрических фигур. Доказательства условий равенства пары треугольников. Определение соотношения прямых, заключающих равные углы у треугольников.
презентация [214,6 K], добавлен 04.12.2014Доказательство теоремы единственности для кривых второго порядка. Преимущества и недостатки разных способов доказательства теоремы единственности. Пучок кривых второго порядка. Методы решения теоремы единственности для поверхностей второго порядка.
курсовая работа [302,7 K], добавлен 22.01.2011Векторные пространства, скалярное произведение и норма функций, ортогональные системы функций, равенства и тригонометрический ряд Фурье. Сходимость интеграла Фурье, основные сведения теории преобразования. Операционное исчисление, преобразование Лапласа.
учебное пособие [1,2 M], добавлен 23.12.2009Логический синтез устройства с использованием соотношений булевой алгебры. Составление таблицы истинности. Основные соотношения булевой алгебры. Логическая функция в смысловой, словесной, вербальной, табличной и аналитической математической формах.
лабораторная работа [83,6 K], добавлен 26.11.2011Способы построения искусственного базиса задачи. Выражение искусственной целевой функции. Математическая модель задачи в стандартной форме. Получение симплекс-таблиц. Минимизации (сведения к нулю) целевой функции. Формы преобразования в задаче равенства.
задача [86,0 K], добавлен 21.08.2010Система линейных неравенств, определяющих треугольник. Доказательство базиса четырехмерного пространства и определение координат вектора. Исследование функций на периодичность, монотонность и экстремум. Площади фигуры, ограниченной графиками функций.
контрольная работа [174,5 K], добавлен 26.01.2010