Общие аксиомы конструктивной геометрии. Аксиомы математических инструментов. Изображение геометрических фигур в параллельной проекции. Методика решения задач на построение. Изучение теоретической основы практической графики. Проективные преобразования.
- 3782. О гипотезе Вороного
Задача установления факторизации непроизводимых полиномов с целыми коэффициентами по простым модулям. Квадратичный и кубический законы взаимности. Поиск условий, которым должно удовлетворять простое число р, чтобы получить определенный тип факторизации.
Характеристика понятий топологического пространства и гомеоморфизма, которые являются фундаментальными в математике. Выявление метрических и топологических свойств объектов. Структура и свойства гладких многообразий. Деформации реальных объектов.
Доказательство делимости чисел при сравнении по ненулевому рациональному модулю. Основные свойства сравнения по ненулевому рациональному модулю натуральных чисел. Описание отличия сравнимости по ненулевому рациональному модулю от обычного сравнения.
Доказательство подлинности вспомогательной теоремы Ферма. Делимость чисел на основе сравнения по ненулевому рациональному модулю. Теорема Ферма для всех простых нечётных показателей переменных. Доказательство бесконечности регулярных простых чисел.
Приведены результаты эмпирических исследований составных чисел Мерсенна вида Mp=2p–1. Поставлена следующая задача – определить наименьшие простые делители составных чисел Мерсенна. Показаны примеры использования метода факторизации чисел Мерсенна.
Анализ вопросов, связанных с приведением бесконечных матриц с суммируемыми диагоналями к диагональному или блочно-диагональному виду с помощью преобразования подобия. Характеристика условий, при которых это возможно. Оценка собственных значений матрицы.
Метод упрощения решения дифференциального уравнения, определяющего такие нелинейные функции от гиперкомплексного переменного как гиперболические и тригонометрические. Введение фиктивных переменных. Закон композиции гиперкомплексной числовой системы.
Наикратчайшее элементарное доказательство последней теоремы Ферма. Доказательство делимости числителей чисел Бернулли. Делимость чисел на основе сравнения по ненулевому рациональному модулю. Теорема Ферма для всех простых нечётных показателей переменных.
Ознакомление с историей доказательства теоремы Ферма. Исследование и анализ особенностей равенства для трёх действительных целых положительных чисел. Рассмотрение и характеристика преобразования уравнения, позволяющего получить квадратное уравнение.
Изучение научной деятельности доктора физико-математических наук, заслуженного профессора МГУ им. М.В. Ломоносова, автора учебников и статей в области комбинаторного анализа – Константина Алексеевича Рыбникова. Анализ педагогической деятельности ученого.
Нелокальная задача для уравнения Мак-Кенддрика фон Ферстера с нелинейным интегральным условием вместо стандартного граничного и нелинейной правой частью. Доказана априорная оценка. Токсичность вытяжки виноградных косточек по методике Н.С. Строганова.
- 3793. О задаче с операторами М. Сайго на характеристиках для вырождающегося гиперболического уравнения
Исследование нелокальной задачи для вырождающегося уравнения гиперболического типа в характеристической области, условия которой содержат обобщенные операторы дробного интегродифференцирования на характеристиках. Доказательство однозначной разрешимости.
Изучение основных законов распределения дискретных случайных величин. Применение на практике основных расчетов и теорий биномиального распределения. Сущность закона распределения случайных величин, формулы Бернулли и ее применение в теории вероятности.
Поиск структурообразующих логических цепочек с помощью "скользящего окна" переменной длины в бинарных и потоковых последовательностях равновероятных событий. Расчёт и распределение логических цепочек. Алгоритм программного поиска при моделировании.
Пропускные способности дуг и емкости вершин. Решение задачи о заполнении вершин графа из одного источника с условием "жадности вершин". Длина наибольшей ветви ордерева. Пропускные способности всех дуг и мощность источника. Заполнение графа подключением.
Особенность описания периодических групп, содержащих бесконечную абелеву подгруппу и имеющих конечное множество классов неинвариантных сопряженных подгрупп. Проведение исследования ступени разрешимости всякой неинвариантной разрешимой подгруппы группы G.
Применение ортонормированных базисов в квантовой физике. Исследование зависимости константы неопределенности от коэффициентов линейных комбинаций функций Эрмита. Ортогональные преобразования, уменьшающие константу неопределенности для всех функций базиса.
Обзор результатов разрешимости начально-граничной задачи, описывающей рассеяние примеси в турбулентной атмосфере, корректности математических моделей, описывающих примеси в атмосфере и представленной задачей Коши, первой и третьей краевой задачами.
Исследование локальных свойств интеграла столкновений и классического решения нестационарного уравнения переноса излучения. Свойства гладкости интеграла столкновений. Сущность кусочно-гладкой поверхности, изменение порядка интегрирования в интегралах.
Эстетический потенциал математического объекта. Появление в результате научной революции математических формулировок, описывающих новую, до того времени неизвестную область природы. Красота математических соотношений в природе, науке, технике, обществе.
Построение областей асимптотической устойчивости и неустойчивости уравнения в плоскости параметров уравнения. Наименьший по модулю нуль функции. Уравнение с двумя запаздываниями и постоянными коэффициентами. Область однолистности для отображения.
Развитие методов научного исследования проблем динамики твердого тела. Значение труда Н.И. Лобачевского "Условные уравнения для движения и положение главных осей в твердой системе" для возможности эффективного применения геометрического метода в механике.
Рассмотрение особенностей применения методов Монте-Карло с цепями Маркова в экономических исследованиях. Интуитивное обоснование алгоритма Метрополиса. Изучение гиббсорского выбора и маргинальной функции плотности двумерного нормального распределения.
Рассмотрение семейства кривых на плоскости. Определение сущности огибающей семейства - линии, которая в каждой своей точке касается одной из линий семейства. Изучение понятия эволюты и эвольвенты. Исследование процесса построения сопряженного профиля.
Эволюция представлений о везении как вероятности наступления события, философская категория фортуны. Оценка вероятности благоприятного события и его изменение во времени. Г. Гардано, Пьер де Ферма и Блеиз Паскаль как основоположники теории вероятностей.
Практические следствия методологии прикладной статистики. Использование асимптотических результатов при конечных объемах выборок. Выбор одного из многих критериев для проверки конкретной гипотезы. Введение моделей деятельности математика и прикладника.
Знакомство с наиболее распространенными идеями обобщения конструкции Сасаки на случай нечетной размерности. Рассмотрение основных способов определения геодезической пульверизации связности над распределением и N-продолженной метрической связности.
Сравнение по ненулевому модулю третьего натурального числа. Характеристика главных особенностей деления числа на множество указанных чисел (дробных или целых). Сложение и умножение чисел. Отношение эквивалентности. Основные классы сравнения чисел.
Описание свойства множества всех множеств – его несамоподобие, с использованием утверждения о количестве точек на прямой между двумя точками. Показано, что мощность множества всех множеств больше, чем мощность самоподобного множества; доказательства.
