• Схема Бернулли, её определение и задачи, которые решаются по ней. Важное условие, без которого схема Бернулли теряет смысл. Возможные исходы при независимых испытаниях одинаковых вероятностей. Теорема и формула Бернулли, определение вероятностей событий.

    контрольная работа (179,6 K)
  • Теория вероятностей как один из разделов математики. Типы события и действия над ними. Случайное событие, его виды. Применение операций сложения и умножения при определении вероятностей. Наглядная геометрическая интерпретация этих понятий, дерево исходов.

    реферат (289,1 K)
  • Решение систем линейных уравнений методом Гаусса. Линейные операции над векторами и разложение вектора по ортам координатных осей. Геометрический и физический смысл определенного интеграла. Предел и непрерывность функции комплексного переменного.

    курс лекций (11,9 M)
  • Геометрические построения, историческая справка. Построения с помощью циркуля и линейки. Общие аксиомы конструктивной геометрии. Геометрические построения одной линейкой. Аксиомы математических инструментов. Окружность и ее центр (построение Штейнера).

    курсовая работа (512,2 K)
  • Построение графа отношения "x+y<=7" на множестве М={1,2,3,4,5,6}. Матрица сложности (вершин), инциденций (ребер) и расстояний. Вектор удаленности, центр и периферийные вершины. Радиус и диаметр графа. Числа внутренней и внешней устойчивости графа.

    задача (125,3 K)
  • Главные концепции и содержание теории графов, ее место и значение в современной математической науке. Матрицы, ассоциированные с графами, принципы реализации различных операций с ними. Отличительные особенности и структура ациклических графов, их обходы.

    контрольная работа (707,6 K)
  • Краткий перечень основных понятий теории графов как раздела дискретной математики. Понятия смежности и инцидентности. Матрицы смежности и инцидентности, достижимости и связности. Маршруты и пути. Применение методов теории графов в прикладных задачах.

    методичка (208,9 K)
  • Сущность теории графов – как области дискретной математики, особенностью которой является геометрический подход к изучению объектов. Основные термины и теоремы теории графов, способы и методы их задания: геометрический, матрица смежности и инцидентности.

    контрольная работа (190,5 K)
  • Первая работа по теории графов всемирно известного математика и механика Леонардо Эйлера. Построения электрических цепей и подсчёта химических веществ с различными типами молекулярных соединений. Становление кибернетики и развитие вычислительной техники.

    реферат (1,2 M)
  • История возникновения, сущность, основные понятия, виды, способы задания и характеристики вершин теории графов. Доказательство теоремы Эйлера об эйлеровых графах (критерия эйлеровости графа). Алгоритм решения задач изоморфизма. Понятие дерева и леса.

    лекция (348,3 K)
  • Основные понятия теории графов. Алгоритм построения эйлерового пути. Теория графов как область дискретной математики, особенностью которой является геометрический подход к изучению объектов. Задача коммивояжера как одна из задач теории комбинаторики.

    реферат (647,3 K)
  • Системы дифференциальных уравнений. Непрерывно дифференцируемые или абсолютно непрерывные функции. Математическое описание управляемой системы с обратной связью. Теоремы существования решений для дифференциальных включений в конечномерном пространстве.

    контрольная работа (341,7 K)
  • Основные понятия теории систем дифференциальных уравнений на примере нормальных систем. Класс нормальных линейных однородных систем данных уравнений. Понятие фундаментальной системы решений. Задача Коша, метод Эйлера и исключения неизвестных функций.

    лекция (530,6 K)
  • Актуальность решения текстовых задач в современной методике преподавания математики. Понятие и роль текстовых задач в курсе алгебры. Психолого-педагогические основы формирования умения решать данные задачи. Алгебраический и геометрический метод решения.

    презентация (236,8 K)
  • Математическая теория конфликтных ситуаций или теория игр. Назначение - решение задач в условиях неопределенности. Оптимальная стратегия для каждого игрока. Игровые модели, платёжная матрица, нижняя и верхняя цена игры. Задачи линейного программирования.

    курсовая работа (107,9 K)
  • Изучение формальных моделей принятия оптимальных решений в условиях конфликта. Конкретизация объектов конфликта и связей между ними в теории игр. Рассмотрение примеров бескоалиционной игры. Антагонистические и позиционные игры в современной теории игр.

    реферат (306,0 K)
  • Теория игр как новый раздел оптимизационного подхода, позволяющего решать новые задачи при принятии решений, применяется при выборочных обследованиях конечных совокупностей, при проверке статистических гипотез. Практическое использование смешанных стратег

    курсовая работа (219,2 K)
  • Особенности проведения математического анализа конфликта. Теория игр как раздел прикладной математики, изучающий формальные модели принятия оптимальных решений в условиях конфликта. Математические аспекты неоклассической экономики. Виды игровых моделей.

    курсовая работа (26,2 K)
  • Задача на составление платежной матрицы. Матричная игра в чистых стратегиях. Смешанное расширение игры. Нахождение оптимальной стратегии по критерию Гурвица. Биматричные игры, ситуации равновесия по Нэшу. Векторы как дележи в кооперативной игре трех лиц.

    контрольная работа (225,8 K)
  • Верхняя и нижняя цена игры, проверка на наличие седловой точки. Возможность как наихудшего, так и наилучшего для человека поведения природы. Принцип недостаточного основания Лапласа. Критерий минимального риска Севиджа. Проверка правильности решения игры.

    контрольная работа (83,2 K)
  • Вычисление нижних и верхних границ и составление платежных матриц. Определение стратегий игры и седловых точек согласно заданным матрицам. Ознакомление с решением матричных игр графоаналитическим методом с помощью применения электронных таблиц excel.

    контрольная работа (5,2 M)
  • Понятие теории игр как теории математических моделей принятия решений в условиях неопределенности, столкновения, конфликтных ситуациях. Неформальное описание игр и некоторые примеры: игры двух лиц с нулевой суммой, с седловой точкой. Смешанные стратегии.

    курсовая работа (535,2 K)
  • Игра в нормальной форме. Исход сильного равновесия без создания коалиции игроков. Дуэли с одним выстрелом. Вектор Шепли произвольных игр. Арбитражная схема аксиомы Нэша. Существование ситуации равновесия в конечной позиционной игре с полной информацией.

    контрольная работа (576,8 K)
  • Определение цены реализации и полной себестоимости единицы продукции в зависимости от технологий. Расчет доли продукции предприятия, приобретаемой населением в зависимости от соотношения цен на продукцию. Особенности итерационного метода Брауна-Робинсона.

    контрольная работа (171,2 K)
  • Разница между информацией и энтропией. Системы, которые соответствуют эргодической теории. Построение хода Хэмминга для передачи 4-х разрядной информационной комбинации, процесс обнаружения ошибки. Возможности предсказания поведения вероятностных систем.

    контрольная работа (76,0 K)
  • Применения теории катастроф. Значение элементарной теории катастроф. Потенциальные функции с двумя активными переменными. Гиперболическая омбилическая катастрофа Рене Тома. Катастрофа типа "Бабочка", "Ласточкин хвост", катастрофы с точкой возврата.

    реферат (25,3 K)
  • Особенности границы устойчивости, бифуркации и катастрофы. Теория особенностей X. Уитни и ее применение. Волновые фронты и их метаморфозы. Потеря устойчивости равновесных и автоколебательных режимов. Крупномасштабное распределение вещества во Вселенной.

    книга (850,7 K)
  • Порядок и сроки выдачи заданий на курсовое проектирование по дисциплине "Теория конечных графов и ее приложения". Содержание курсового проекта. Пример решения практической задачи на примере составления графика обслуживания одиноких пенсионеров района.

    методичка (3,5 M)
  • Определение координатно-двойственной конфигурации. Доказательство теорем: принцип неинцидентности, принцип взаимности. О двойственности координатного репера. Составление таблиц двойственности, исследование конфигурации Дезарга, автополярной конфигурации.

    научная работа (491,7 K)
  • Модель дихотомических данных в виде конечной последовательности независимых испытаний Бернулли. Задачи проверки статистических гипотез, классификации, усреднения люсианов. Проверка гипотез по совокупности выборок, теория несмещенных статистических оценок.

    статья (65,6 K)