• Особенность определения годографа вектора-функции. Характеристика нахождения выражения дифференциала дуги. Вычисление кривизны линии, заданной параметрически и уравнением в полярных координатах. Изучение эвольвентного зацепления математиком Л. Эилером.

    лекция (72,7 K)
  • Визначення лінії другого порядку, її види: коло, еліпс, парабола, гіпербола. Ексцентриситет еліпса, як відношення фокальних радіусів довільної точки еліпса до відстаней цієї точки до відповідних директрис. Рівняння параболи, ексцентриситет гіперболи.

    презентация (314,5 K)
  • Поняття про криві другого порядку. Коло та його рівняння. Еліпс, його рівняння та властивості. Гіпербола та її рівняння. Парабола та її рівняння. Властивості параболи. Полярні та параметричні рівняння кривих другого порядку. Гіперболічний косинус й синус.

    лекция (216,8 K)
  • Криволинейные интегралы первого рода, их свойства и вычисление. Условия независимости криволинейного интеграла 2-го рода от пути интегрирования. Связь поверхностных интегралов первого и второго рода. Формула Гаусса-Остроградского и формула Стокса.

    контрольная работа (388,2 K)
  • Понятие системы координат. Использование прямоугольной (декартовой), полярной, цилиндрической, сферической системы координат при решении задач. Определение координат радиус-вектора. Формулы перехода от цилиндрических и сферических координат к декартовым.

    реферат (301,3 K)
  • Понятие криволинейного интеграла 1-ого рода от функции как предела интегральной суммы, полученной в результате разбиения этой кривой на малые участки с длиной и постоянной плотностью, механический смысл и порядок определения. Координаты центра тяжести.

    практическая работа (34,6 K)
  • Понятие криволинейного интеграла второго рода, условие его существования. Условия независимости криволинейного интеграла второго рода от пути интегрирования. Механический смысл криволинейного интеграла второго рода, его место в многосвязной области.

    курсовая работа (2,5 M)
  • Основные определения, понятия, свойства криволинейного интеграла. Определение массы кривой с переменной линейной плотностью. Расчет площади цилиндрической поверхности. Притяжение материальной точки материальной кривой. Вычисление длины всей кривой.

    курсовая работа (118,2 K)
  • Застосування та обчислення криволінійних інтегралів першого роду. Умова незалежності криволінійного інтегралу від шляху інтегрування. Визначення довжини дуги кривої, маси кривої та координат центру мас. Особливості роботи силового векторного поля.

    курсовая работа (540,0 K)
  • Загальні відомості про інтегрування. Криволінійні інтеграли І роду: теоретичні відомості та фізичний зміст. Інтеграл Рімана як найпростіший із визначених інтегралів та є границею інтегральної суми. Методи знаходження криволінійного інтегралу I роду.

    реферат (445,1 K)
  • Общие свойства алгебраических кривых третьего порядка. Краткие сведения из истории развития учения о кривых. Классификация Ньютона алгебраических кривых третьего порядка. Некоторые замечательные кривые третьего порядка. Декартов лист и циссоида Диоклеса.

    курсовая работа (1,7 M)
  • Распознавание образов как одна из проблем искусственного интеллекта. Анализ метода распознавания основанному на кривых Безье. Пример поиска признаков объекта для сегментированной области. Математический аппарат для поиска и нахождения точек интереса.

    статья (357,2 K)
  • Сущность понятия и уравнение окружности в прямоугольной системе координат. Понятие и графическое изображение эллипса. Сущность и графики параболы и гиперболы. Определение и уравнение параболы. Гипербола в опыте Резерфорда при рассеивании альфа-частиц.

    реферат (435,8 K)
  • Окружность - замкнутая плоская кривая, все точки которой одинаково удалены от центра. Изучение многих свойства кривых второго порядка при помощи характеристической квадратичной формы, соответствующей уравнению кривой. Классификация кривых второго порядка.

    реферат (217,2 K)
  • Понятие и сущность кривой второго порядка, определение координат центра и радиуса окружности. Специфика и описание эллипса, построение декартовой системы координат. Характеристика канонического уравнения гиперболы и параболы, их отличительные черты.

    лекция (119,8 K)
  • Рассмотрение линий и пучков второго порядка на проективной плоскости. Аффинная геометрия с проективной точки зрения. Диаметральные плоскости, как полярные плоскости несобственных точек. Проективная классификация вещественных поверхностей второго порядка.

    курсовая работа (669,1 K)
  • Уравнение кривой второго порядка. Уравнения окружности, эллипса, гиперболы и параболы как частные случаи уравнения. Уравнение окружности в полярных координатах. Каноническое уравнение эллипса. Вывод канонического уравнения гиперболы, ее эксцентриситет.

    реферат (259,1 K)
  • Определение и свойства эллипса, гиперболы и параболы. Фокальные радиусы точек. Система декартовых прямоугольных координат. Уравнения директрис эллипса. Канонические уравнения эллипса, гиперболы и параболы. Определение уравнений и кривых второй степени.

    реферат (56,9 K)
  • Изучение постоянных действительных чисел. Общее уравнение кривой второго порядка. Выделения полного квадрата прямых линий. Гипербола и парабола как геометрические места точек плоскости. Оценка размещения декартовых координат в алгебраическом уравнении.

    лекция (153,3 K)
  • Определение кривых второго порядка на плоскости как линий пересечения кругового конуса с плоскостями, не проходящими через его вершину. Характеристика эллипса с помощью декартовой системы координат. Понятие и основные свойства гиперболы и параболы.

    лекция (15,4 K)
  • Кривые и поверхности 2 порядка. Понятие канонических эллипсов, гиперболы, параболы и расчет их эксцентриситета. Кривые, заданные параметрическими уравнениями. Определение полярной системы координат и положение кривых в полярной системе координат.

    методичка (582,7 K)
  • Способы образования кривых линий как траекторий последовательных положений движущейся точки. Проведение касательных и нормалей к плоским кривым. Кривые линии, построенные при помощи центроид - рулетты, их виды. Примеры замечательных плоских кривых линий.

    контрольная работа (19,3 K)
  • Характеристика кривой линии как множества точек пространства, координаты которых являются функциями одной переменной. Определение длины отрезка кривой. Изучение особенностей алгебраических, трансцендентных кривых. Анализ особенностей плоских кривых линий.

    реферат (929,2 K)
  • Вид общего уравнения кривой второго порядка. Общее понятие про эллипс, его каноническое (простейшее) уравнение. Вещественная и мнимая полуось гиперболы. Каноническое уравнение параболы. Особенности решения нелинейных неравенств с двумя неизвестными.

    реферат (8,1 K)
  • Возможность применения генетического алгоритма к задаче криптоанализа тригонометрического шифра, разработанного В.П. Сизовым. Схема построения генетического алгоритма и анализ получаемых результатов для произвольных текстов на естественном языке.

    статья (73,3 K)
  • Розгляд криптографічної схеми, що використовує протокол Діффі-Геллмана, застосований до кільця Zp та групи точок еліптичної кривої Едвардса. Алгоритм, який можна використовувати для закритого зв’язку при обміні даними по мережі загального користування.

    статья (185,2 K)
  • Рассмотрение и анализ основных групп статистических методов, которые получили наибольшее распространение в статистических исследованиях. Определение особенностей нулевой гипотезы и альтернативы. Характеристика односторонних и двусторонних критериев.

    контрольная работа (76,0 K)
  • Возникновение вариантов решений в результате анализа проблемной ситуации, представленной в виде описательной модели. Аналитический и геометрический методы расчета при минимаксном критерии принятия решений. Критерии принятия решений Гурвица и Гермейера.

    лабораторная работа (581,1 K)
  • Методика и основные этапы доказательства критериев равномерной исчерпываемости для последовательности исчерпывающих внешних мер, заданных на не сигма-полном классе множеств и принимающих значения в топологической абелевой группе. Анализ результатов.

    статья (716,5 K)
  • Особенности анализа вариационных рядов распределения. Сущность наиболее распространенных критериев согласия: критерий Колмогорова, Романовского и хи-квадрат Пирсона. Передача наследственности от родительских организмов к их потомкам по законам Менделя.

    реферат (214,2 K)