Складання і доведення тотожності згущення на основі кутів суміжності у вузлах дискретно представлених кривих до і після згущення. Розробка різних різницевих схем згущення на основі співвідношень між кутами суміжності, неперервна і дискретна інтерполяція.
Розробка методу опису сім'ї паралельних фігур на площині та обчислення периметрів її елементів. Розробка комп'ютерних програм визначення геометричної форми паралельних множин. Аналіз залежності між інтегральними характеристиками деяких паралельних множин.
Розв'язання системи лінійних алгебраїчних рівнянь. Розробка нового геометричного підходу до побудови базисних функцій. Методика геометричного моделювання тривимірних скінчених елементів сирендипової сім'ї. Удосконалення правил випадкових блукань.
Визначення поняття модулю числа та спосіб його позначення. Знаходження модулю додатного числа або 0, від'ємного числа. Чи може модуль якого-небудь числа бути від'ємним числом. Знаходження модулів двох протилежних чисел. Перевірка домашнього завдання.
Теорія просторових обводів кривих, методи інтерполяції. Геометричні способи підвищення швидкості синтезу середовища віртуальної реальності на етапі візуалізації з врахуванням нової методики апріорної оцінки інформаційної потужності віртуальних сцен.
Можливості спеціальних координатних систем, які можуть застосовуватися під час проєктування поверхонь складної криволінійної форми. Процес перетворення декартової системи координат на узагальнену та циліндричну. Деформація площини загального положення.
Поняття нормального фінітного функтора скінченного степеня в асимптотичній категорії. Задача метризації множин в асимптотичній категорії для функтора. Приклади існування та неснування грубих вкладень гіперсиметричних степенів нульвимірних просторів.
Питання розпізнавання та морфологічного аналізу геометричних форм зображень проекційної природи. Конструктивні алгоритми ідентифікації зображень проекційної природи, на основі позиційних та метричних задач багатовимірної геометрії простору моделі.
Перспективи застосування геометричних моделей в будівництві. Аналіз методів ефективного формоутворення просторових трансформованих систем. Визначення математичних залежностей та розробка алгоритму процесу моделювання трансформації складчастих систем.
Сравнение отрезков и углов, их измерение. Первый и второй признак равенства треугольников. Медианы, биссектрисы и высоты треугольника. Признаки параллельности двух прямых. Сумма углов треугольника. Соотношение между сторонами и углами треугольника.
Рассмотрение понятия внутренней связности, определение тензора кривизы Схоутена и изучение его свойств. Изучается строение тензора Схоутена SQS-многообразия. Определение продоложенной почти контактной метрической структуры на распределении многообразия.
Зарождение и развитие архитектуры. Геометрия в практической деятельности человека. Храм в Дейр Эль–Бахри, геометрия при строительстве метро, здания с круглым основанием. Проверка правильности угольника и линейки. Расстояние между недоступными точками.
Древний Египет как первое государство, оставившее самые ранние математические тексты. Умения древних египтян. Нахождение площади поля прямоугольной, треугольной и трапециевидной формы. Определение объема усеченной пирамиды, в основании которой квадрат.
Нахождение угла между прямой и плоскостью в пространстве. Составление уравнения перпендикуляра опущенного из точки. Определение формул эллиптического, гиперболического и параболического цилиндров. Написание уравнений геометрических свойств поверхности.
Основные аксиомы стереометрии, правила пересечения плоскостей. Условия параллельности прямых и плоскостей. Особенности изображения пространственных фигур, построение проекции. Перпендикулярность прямых и плоскостей, углы и расстояния в пространстве.
Зарождение геометрии в Древнем Египте. Элементарная планиметрия: аксиомы и постулаты. Названия и площади многоугольников. Примеры элементарных геометрических доказательств. Стереометрия: определение плоскости, свойства многогранника, призмы, пирамиды.
Геометрия Лобачевского ("воображаемая" геометрия). Создание модели геометрии Лобачевского из материалов геометрии Евклида, а также установление непротиворечивости и законности новой геометрической системы, разные геометрии и разные пространства.
Основные понятия геометрии Лобачевского с приведением некоторых примеров теорем неевклидовой геометрии и различные приложения геометрии Лобачевского. Рассмотрение моделей (интерпретаций) данной геометрии, а также моделей Бельтрами, Кэли-Клейна, Пуанкаре.
Метод координат в пространстве. Решение задачи на многогранник, цилиндр, конус. Определение координат вектора разности. Условие компланарности. Введение прямоугольной системы координат. Расчет длинны, используя формулу скалярного произведения векторов.
Значение геометрии в практической деятельности человека, история ее развития. Созидательная сила прямого угла. Геометрия в величайших архитектурных сооружениях: Тадж-Махал, египетская пирамида, русские церкви. Применение окружности в строительстве.
Сферика как первая геометрия, отличная от евклидовой. История возникновения сферической геометрии, первые теоремы и античные математические сочинения. Основные понятия сферической геометрии, свойства сферического треугольника и его тригонометрия.
- 562. Геометрия чисел
Рассмотрение основной задачи геометрии чисел, а также теоремы Минковского с её доказательством. Объяснение таких понятий геометрии чисел, как решётки и критические решётки. В работе приводится, так называемая, "неоднородная задача" геометрии чисел.
Основні тригонометричні формули Лобачевского. Де застосовують геометрію Мінковського. Властивості тригонометричних і гіперболічних функцій. Геометричні властивості площини Мінковського-Банаха. Внутрішня геометрія поверхні і загальна геометрія Рімана.
Исследование понятий о гиперболических функциях, их основных свойствах и графики. Способ разложения этих функций в ряды Маклорена. Использование гиперболических функций при вычислении интегралов дифференциальных уравнений и в теории Относительности.
История комплексных У. Гамильтона, названные "кватернионами". Свойства этих чисел, и их примеры: операция сопряжения, тождество для двух квадратов, деление. Определение кватернионов и их сопряжение. Гиперкомплексные числа: коммутативные, ассоциативные.
Понятие плоской кривой, заданной уравнением третьей степени. Понятие эллиптической кривой. Модулярные формы и модулярные эллиптические кривые. Определение модулярной эллиптической кривой и гипотеза Таниямы. Вывод теоремы Ферма из гипотезы Таниямы.
Аналіз головних властивостей нерозкладних нетерових напівланцюгових кілець, які мають нескінченну глобальну розмірність. Визначення кількості черепичних порядків. Дослідження глобальної розмірності нетерових з двох сторін напівланцюгових кілець.
- 568. Глобальна стійкість різницевих рівнянь та функціонально-диференціальних рівнянь з імпульсною дією
Дослідження глобальної стійкості єдиної нерухомої точки різницевих та функіонально-диференціальних рівнянь з імпульсною дією та з правими частинами, які задовольняють умову Йорка. Розв'язки систем функціонально-диференціальних рівнянь з імпульсною дією.
Дослідження властивостей сагайдаків горенштейнових напівмаксимальних порядків, які ізоморфні трикутним. Знаходження необхідних і достатніх умов, за яких таблиця Келі скінченної групи є матрицею показників горенштейнового напівмаксимального порядку.
Абсолютное значение числа. Формулы сокращенного умножения. Решение квадратного уравнения. Упрощение многоэтажных дробей. Действия со степенями. Действия с логарифмами. Преобразования для нахождения производных, решения дифференциальных уравнений.