- 3211. Основы высшей математики
Системы линейных уравнений и методы их решения. Определение наибольшего и наименьшего собственных значений итерационным методом. Аппроксимация и интерполяция функций. Численное дифференцирование и интегрирование. Отделение корней нелинейного уравнения.
Сущность численных методов решения задач на ЭВМ как части вычислительной математики. Процесс классификации задач численных методов. Понятие погрешности как разницы между точным значением величины и известным значением. Метод оптимизации и равных вкладов.
- 3213. Основы геометрии
Определение терминов "движение плоскости" и "наложение". Особенности и свойства осевой симметрии. Центральная симметрия как движение, изменяющее направления на противоположные. Определение термина "параллельный перенос". Свойства скользящей симметрии.
- 3214. Основы геометрии
Три признака равенства треугольников. "Замечательные" линии и точки: высоты, медианы, бисектриссы треугольника, прямые Эйлера и Симсона. Практическая значимость точки Торричелли, окружности девяти точек, точки Брокара в строительстве и архитектуре.
- 3215. Основы движения
Доказательство Фалесом равенства углов при основании равнобедренного треугольника. Развитие теории движений, определение равенства фигур. Виды движений: параллельный перенос, поворот вокруг точки и др. Аналитическое выражение движения на плоскости.
Направления исследований в дискретной математике, направления их реализации и анализ результатов. Виды теорем и способы их доказательства: цепочка заключения, от противного, метод переборов и математической индукции, комбинированное доказательство.
Основные понятия теории графов и ее приложения к исследованию линейных систем, задачам минимизации, а также сетевого планирования. Приведение примеров решения задач различной сложности с подробными объяснениями. Задачи для самостоятельной работы.
Понятия дисперсного анализа. Факторы и их уровни. Однофакторный дисперсионный анализ, его виды. Особенности двухфакторного дисперсионного анализа, его модель с одинаковым числом наблюдений в ячейке. Постоянные эффекты при неравном числе наблюдений.
- 3219. Основы дробей
Возникновение дробей, их изображение с помощью дробной черты, сравнение по величине эмпирическим методом, сравнением с единицей и путем приведения к общему знаменателю. Дроби как следствие измерения и деления. Числитель, знаменатель и смешанные числа.
- 3220. Основы интегрирования
Определение первообразной функции и неопределенного интеграла. Геометрический смысл неопределенного интеграла. Теорема о разложении правильной рациональной дроби на простейшие дроби. Метод неопределенных коэффициентов. Формула замены переменной.
- 3221. Основы комбинаторики
Общие правила комбинаторики, определение понятий множества и факториала. Содержание разделов комбинаторики - перечислительного, экстремального и вероятностного. Понятие о размещении, перестановке и сочетании элементов. Решение комбинаторных задач.
- 3222. Основы комбинаторики
Основные понятия теории вероятностей. Локальная теорема Лапласа, формула Пуассона, Бейса. Случайные величины и законы их распределения. Плотность распределения вероятности непрерывной случайной величины. Среднеквадратическое (стандартное) отклонение.
- 3223. Основы комбинаторики
Типы событий: достоверные, невозможные, случайные. Понятие, предмет исследования комбинаторики, история возникновения и развития соответствующего научного направления. Применение методов теории вероятностей в разных сферах. Основные комбинаторные задачи.
- 3224. Основы комбинаторики
Понятие о науке "Комбинаторика". Комбинаторика как раздел математики, изучающий размещения, перестановки, сочетания. Комбинаторика в различных областях жизнедеятельности: в литературе, на шахматной доске и в играх. Фигурные числа, старинные задачи.
Применение статистических методов изучения живых организмов. Определение перспектив использования биометрического метода. Функциональная зависимость и корреляция в биометрических исследованиях. Рассмотрение примеров корреляционных зависимостей.
- 3226. Основы криптографии
Что такое шифрование. Основные понятия и определения криптографии. Современные методы шифрования: алгоритм замены (подстановки), особенности алгоритма перестановки, гаммирования. Комбинированные методы шифрования. Задачи криптографии и их решение.
Классические шифры, маршрутная транспозиция. Диофантово управление первой степени, решение сравнения, криптосистема без передачи ключей. Криптосистема с открытым ключом, надежность системы. Криптографические алгоритмы защиты программного обеспечения.
- 3228. Основы линейной алгебры
Поиск способов, которыми можно выбрать из шести пар одну перчатку на левую руку и одну на правую так, чтобы выбранные перчатки были разных размеров. Количество способов, которыми можно купить 12 открыток из десяти видов в неограниченном количестве.
Изучение сведений о матрицах. Рассмотрение алгебры матриц. Обзор определителей квадратных матриц. Анализ системы линейных уравнений. Определение положения векторов на плоскости и в трехмерном пространстве. Оценка элементов аналитической геометрии.
Определение логических отношений между понятиями и выражение этих отношений с помощью круговых схем. Объединенная классификация суждений, изображение отношений между терминами с помощью кругов Эйлера, установление распределенности субъекта и предиката.
- 3231. Основы математики
Понятие множества, его виды и характеристическое свойство. Математическое доказательство как цепочка дедуктивных умозаключений, выполняемых по определенным правилам. Теоретико-множественный смысл натурального числа, нуля и операций на множестве.
- 3232. Основы математики
Принцип Даламбера для рядов и двойных интегралов. Расчет радиуса сходимости степенного ряда. Задача Коши для дифференциальных уравнений. Линейная алгебра и аналитическая геометрия. Обратная матрица системы уравнений с использованием формулы Крамера.
- 3233. Основы математики
Решение задачи по теории вероятностей. Использование правил дифференцирования и формул для производных степенной и тригонометрической функций, нахождение производных. Отображение данных множеств при помощи кругов Эйлера. Область определения функции.
- 3234. Основы математики
Множества и операции над ними. Декартово произведение множеств. Понятие и свойства алгоритма. Аксиоматический метод. Понятие о комбинаторной задаче. Математические утверждения и их структура. Основы математической логики. Соответствия и отношения.
- 3235. Основы математики
Определение и характеристика производной функции в направлении вектора. Ознакомление с результатами исследования функции на экстремум. Расчет и анализ дискриминанта уравнения и интеграла. Вычисление площади фигуры, ограниченной прямой и параболой.
- 3236. Основы математики
Определение и анализ вероятностей событий. Рассмотрение формулы полной вероятности. Изучение формулы Бернулли. Расчет математического ожидания, дисперсии и среднего квадратического отклонения. Ознакомление с законом распределения случайной величины.
Определение основных понятий, связанных с отображениями. Предел числовой и ограниченной последовательности. Условие непрерывности функции. Краткая характеристика техники дифференцирования, особенности ее применения. Использование формулы Тейлора.
Анализ графика весовой функции (импульсной переходной) с требуемым шагом дискретизации. Ознакомление с результатами проверки путем обратного преобразования Лапласа от передаточной функции. Определение оригиналов функций с помощью таблиц изображений.
Определение сущности методов математической статистики в аналитической химии. Характеристика элементов математической статистики, используемых при обработке результатов измерений. Расчет дисперсии и среднего арифметического для выборки из результатов.
Характеристика моделей дисперсионного анализа с фиксированными уровнями факторов. Анализ статистических данных. Определение среднего арифметического урожайности. Рассмотрение схемы однофакторного дисперсионного анализа. Изучение метода нулевых гипотез.