Прямі і наближені методи розв’язання систем лінійних алгебраїчних рівнянь. Метод Гауса. Чисельне розв’язання нелінійних алгебраїчних і трансцендентних рівнянь та їх систем. Наближене розв’язання крайової задачі для звичайних диференціальних рівнянь.
Поняття еквівалентних перетворень системи векторів, операції над матрицями та їхні властивості. Обчислення оберненої матриці елементарними перетвореннями. Загальні відомості про системи лінійних рівнянь, особливості та розрахунок діагональної матриці.
Способи вдосконалення методу Ейлера. Розгляд принципу побудови модифікованого методу Ейлера, його суть в обчисленні значень диференціального рівняння (ДР). Значення методу Рунге-Кутта для розв’язання ДР першого порядку, розв’язання задачі Коші для нього.
Розробка ефективних математичних моделей, обчислювальних методів та інструментальних засобів для синтезу моделей багатофакторного оцінювання і вибору альтернатив. Вибір параметрів моделі у класах адитивних, мультиплікативних і змішаних схем компромісу.
Оцінка методу структурно-параметричної компараторної ідентифікації, що дозволяє здійснювати вибір моделі у класі адитивних функцій узагальненої корисності. Методика виділення підмножин ефективних альтернатив у напрямі зменшення їх часової складності.
Характеристика методів та алгоритмів моделювання розподілу потоків в гідравлічних розподільчих системах стискуваної рідини. Поняття та сутність закону Кірхгофа, розрахунок невідомих коефіцієнтів опору. Метод топологічної згортки при лінійних залежностях.
Алгоритми оцінювання кута надходження сигналу на двохелементну та багатоелементну антенні решітки, схеми обчислення їх параметрів. Метод знаходження наближеного розв’язку рівняння максимізації полінома, який базується на стохастичних його властивостях.
Розробка нових математичних методів, інструментальних засобів та методологій підвищення ефективності процесів комп'ютерного моделювання стохастичних систем та процедури розробки і реалізації імітаційних застосувань на основі сучасних мов моделювання.
- 3189. Методи та засоби розв'язання слабоструктурованих задач формування розкладів та розподілу ресурсів
Проектування методів та засобів формування розкладу та розподілу ресурсів як слабоструктурованої задачі. Метод покрокового формування рішення з переміщенням раніше призначених подій. Параметри і джерела слабоструктурованості процесу прийняття рішень.
Застосування вейвлет-аналізу, який дозволяє аналізувати зображення та вилучати геометричні ознаки об’єкта. Розробка критеріїв, які забезпечують адекватність визначення груп перетворень, що дозволяє їх застосовувати в реальних системах технічного зору.
Постановка і структуризація завдання багатокритеріальної оптимізації в умовах стохастичної невизначеності. Розв'язання задачі структурно-параметричної компараторної ідентифікації моделі скалярного багатофакторного оцінювання ефективності рішення.
Множественный регрессионный анализ - метод, позволяющий производить оценку с любым количеством объясняющих переменных. Методика расчета критерия значимости уравнения регрессии. Разработка процедуры умножения матриц на языке программирования Pascal.
Рассмотрение преимуществ и недостатков алгоритмического подхода при решении задач начертательной геометрии и инженерной графики. Проведение анализа применения алгоритмического подхода при изучении одной из тем инженерной графики – проекционного черчения.
Вивчення теми "Квадратні рівняння" у середній школі та її застосування. Означення та види квадратних рівнянь, способи їх розв’язування, застосування теореми Вієта. Розклад квадратного тричлена на лінійні множники. Методика вивчення квадратних рівнянь.
Опис методичної модульно-рейтингової системи навчання математиці на економічних факультетах у вищий школі (на прикладі університету "Острозька академія"). Рекомендації щодо організації самостійної роботи студентів й оцінювання їх знань, умінь та навичок.
Математичні властивості ступенів і логарифмів. Поняття ступеня з раціональним та ірраціональним показником. Логарифмічна функція, її властивості і графік, основні логарифмічні тотожності. Рішення диференціального рівняння радіоактивного розпаду.
Викладення методики вивчення у школі (9-й кл.) арифметичної і геометричної прогресій, їх змісту, властивостей, застосування: перші уявлення про арифметичну і геометричну прогресії; введення поняття послідовності; визначення загального члена послідовності.
Викладення методики вивчення тотожних перетворень виразів у школі та місце цієї теми у програмі з алгебри; вимоги до знань і умінь; формування провідних понять теми; вивчення тотожних перетворень цілих виразів; типові помилки учнів і шляхи їх подолання.
Аналіз проблеми класифікації та створення електронних навчальних посібників і підручників. Аналіз прикладів розроблених у процесі дослідження програмних засобів з метою їх застосування під час навчання дискретної математики та теорії ймовірностей.
Ознакомление с совокупностью подходов, способов и приемов, предназначенных для проведения научных исследований. Основные методы и принципы установления закономерности развития изучаемого явления. Требования к точности измерений в теории статистики.
Изучение понятия "математическое выражение". Описание порядка выполнения действий в сложных выражениях. Методика ознакомления с буквенной символикой в алгебре. Основные свойства числового равенства. Рассмотрение неравенства с переменной, уравнения.
Исторические замечания о геометрических преобразованиях на плоскости и в пространстве. Анализ примерной программы по геометрии. Параллельный перенос и поворот, осевая и центральная симметрии. Движения и равенство фигур. Симметрия относительно плоскости.
- 3203. Методика изучения кривых
Исследование кривой второго порядка, принципы и правила ее построения по каноническому уравнению. Преобразование координат на плоскости. Преобразование координат на плоскости. Приведение к каноническому виду общего уравнения кривой 2-ого порядка.
Подробный алгоритм интерактивного построения геометрии модели в пакете ANSYS. Последовательность задания температурных граничных условий с помощью функции координат. Реализация всех этапов, предусмотренных сущностью конечно-элементного моделирования.
- 3205. Методика исследования элементарных функций на монотонность и выпуклость графика методом обобщения
Решение проблемы исследования элементарных функций на монотонность и выпуклость графика без использования производной. Реализация и возможности применения метода обобщения при нахождении промежутков монотонности рациональных и алгебраических функций.
Качественно-количественная методика оценки реализаций расширенных нечётких арифметических операций по показателю накопления нечёткости. Реализация операций над эталонными треугольными нечёткими числами, оценка нечёткости по лингвистической шкале.
Опис методики вивчення таблиці множення. Визначення типів задач за змістом. Аналіз програмних вимог щодо рівня геометричних знань учнів 1-4 класів. Аналіз методики вивчення багатоцифрових чисел. Аналіз методів формування прийомів додавання і віднімання.
Історія виникнення та властивості логарифмів, їх зв'язок з показниковою функцією. Розгляд способів рішення логарифмічних рівнянь й нерівностей, аналіз типових складностей при їх розв’язанні. Застосування конкретно-індуктивного методу на уроках алгебри.
- 3209. Методика навчання учнів розв’язування задач, пов’язаних з арифметичною та геометричною прогресією
Вивчення діючих програм курсу алгебри по темі "Арифметична та геометрична прогресії, їх властивості". Методика вивчення формул n-го члена та формул суми перших членів арифметичної та геометричної прогресії. Прогресії та їх практичне застосування.
Исследование концепции обучения учеников нахождению возрастания и убывания функции по ее графику, а так же по графику её производной. Сравнительная таблица нахождения промежутков монотонности по графикам функции или её производной. Примеры решения задач.
