• Основы арифметических действий над натуральными числами. Операции декартового произведения множеств. Характеристика комплексных чисел и возможные операции над ними. Пересечение, объединение, дополнение, декартово произведение в курсе школьной математики.

    реферат (21,1 K)
  • Сущность неопределенного интеграла. Определение производной от него, нахождение его дифференциала как подынтегрального выражения. Свойства неопределенного интеграла от алгебраической суммы (разности) двух функций, от дифференциала некоторой функции.

    презентация (162,7 K)
  • Распространенные классы потоков. Стационарный ординарный поток без последействия. Независимые случайные величины, распределенные по показательному закону. Математическое ожидание, дисперсия промежутка времени между событиями. Типы заявок и номера каналов.

    контрольная работа (533,3 K)
  • Краткий экскурс в историю степенной функции. Степенные функции с целым и дробным показателем. Четные положительные показатели. Нечетные отрицательные показатели. Степенные функции с иррациональным показателем. Применение степенной функции человеком.

    презентация (591,6 K)
  • Определение сходимости степени ряда. Применение признаков Даламбера и Коши. Использование формулы Тейлора при аппроксимации и доказательстве большого числа теорем в дифференциальном исчислении. Вычисление значений показательной и логарифмической функции.

    контрольная работа (376,4 K)
  • Характеристика основных элементарных функций. Изучение арифметических свойств пределов. Суть формулы непрерывных процентов. Анализ точек разрыва и их классификации. Особенность неопределенного интеграла и его свойств. Оценка метода наименьших квадратов.

    шпаргалка (205,9 K)
  • Определение пределов последовательности и функции. Точки непрерывности и точки разрыва функции, производные и их приложения. Анализ примеров нахождения производных. Наибольшее и наименьшее значение функции на отрезке, ее исследование на экстремум.

    контрольная работа (153,0 K)
  • Изучение четности и нечетности функции. Анализ нахождения наименьшего положительного периода функций. Определение промежутков знакопостоянства. Возрастание и убывание функций. Нахождение точек экстремума. Характеристика алгоритма исследования функции.

    презентация (585,7 K)
  • Статистические таблицы как наиболее эффективная форма представления результатов сводки. Относительные величины их виды, способы расчета и область применения. Методика определения коэффициента детерминации и эмпирического корреляционного отношения.

    шпаргалка (923,8 K)
  • Гипотеза о подчинении равномерному закону ста одноразрядных чисел. Вычисление коэффициентов линейной зависимости и множественной детерминации. Отношение среднеквадратической ошибки к среднему значению. Среднеквадратическая ошибка прогнозирования.

    курсовая работа (171,9 K)
  • Сущность и основные теоремы дифференциального исчисления, их главные отличия. Процесс построения графика. Описание теоремы Вейерштрасса и Лагранжа, их использование. Обобщенная формула конечных приращений. Раскрытие неопределенностей и правила Лопиталя.

    лекция (41,3 K)
  • История возникновения теории графов и способы их представления в информатике. Определение понятия матрицы смежности и инцидентности. Маршрут как последовательность ребер, в которых каждые два соседних ребра имеют общую вершину. Гамильтонов и Эйлеров цикл.

    презентация (2,1 M)
  • Характеристика базовых требований к чертежам: нормативные документы, масштаб и формат листа. Размеры производных форматов и нанесение размеров. Линии на чертеже. Указание предельного отклонения массы изделия в технических требованиях чертежа по ГОСТу.

    реферат (259,7 K)
  • Формулы сокращенного умножения и разложения на множители, степени и корни, квадратное уравнение, прогрессии (арифметическая, геометрическая) математики. Тригонометрия (формулы сложения двойного и половинного аргумента), геометрия и стереометрия.

    шпаргалка (20,9 K)
  • Сравнение двух парадигм в области методов статистического анализа данных. Отличие новой парадигмы математической статистики: переход от параметрических методов к непараметрическим, от числовых данных к нечисловым. Использование информационных технологий.

    статья (43,5 K)
  • Обоснование необходимости знания основных элементарных функций, их свойств и графиков. Свойства постоянной функции. Корень n-ой степени. Свойства степенной функции с нечетным положительным показателем. Степенная функция с четным отрицательным показателем.

    контрольная работа (892,3 K)
  • Характеристика основных правил комбинаторики. Исследование теоремы о включениях и исключениях. Особенность комбинаторного смысла числа перестановок. Анализ порядка выбора монет. Упрощение вычислительных действий как главная цель изучения бинома Ньютона.

    лекция (210,3 K)
  • Принципы выдвижения рабочей гипотезы о содержании и характере регрессии. Формульное выражение наименьших квадратов. Возможные расхождения теоретических и расчетных критериев детерминации. Интерпретация коэффициентов для решения уравнений регрессии.

    лекция (232,1 K)
  • Выдвижение рабочей гипотезы. Теоретическая регрессия. Влияние случайного члена. Простая регрессионная модель. Метод наименьших квадратов. Прямой расчет коэффициентов регрессии. Проверка гипотез о статистической значимости уравнений парной регрессии.

    презентация (236,2 K)
  • Определение принципов графического построения на плоскости области допустимых решений задачи. Исследование координатных плоскостей и направления полуплоскости. Рассмотрение характеристики значения целевой функции. Построение графического решения.

    задача (300,7 K)
  • Математическое понятие и сущность функции. Свойства и графики функций. Определение первообразной функции. Общие правила обобщения степени. Характеристики первообразной и интеграла. Нахождение натурального логарифма числа в математическом анализе.

    лекция (389,9 K)
  • Отображения и преобразования. Современное определение и основные понятия проективной геометрии на плоскости. Перспективно-аффинное соответствие двух плоскостей. Построение главных направлений. Аналитическая аффинная геометрия. Проективные ряды и пучки.

    учебное пособие (1014,9 K)
  • Криволинейные системы координат. Векторы и тензоры, их преобразования при поворотах системы координат. Свойства тензоров второго ранга, символ Леви-Чивита. Преобразование тензорных величин при инверсии. Взаимно однозначное соответствие между переменными.

    дипломная работа (196,5 K)
  • Определение координат вектора в заданном базисе. Разработка уравнения линии, каждая точка которой отстоит от заданной точки А вдвое дальше, чем от прямой. Доказательство совместимости функции, решение тремя способами, расчет базиса и размерности решений.

    контрольная работа (86,5 K)
  • Определение и примеры выпуклых множеств, гиперплоскости, нормального вектора. Рассмотрение операций, сохраняющих выпуклость. Понятие выпуклой функции. Установление необходимого и достаточного условий минимума гладких функций на выпуклых множествах.

    лекция (64,3 K)
  • Аксиоматическое построение множества натуральных чисел. Отношение делимости и его свойства. Полная и приведенная системы вычетов, теорема Эйлера и Ферма. Тригонометрическая форма записи комплексного числа. Действия над ними в алгебраической форме.

    учебное пособие (555,1 K)
  • Характеристика системы линейных неравенств, определяющих треугольник. Исследование функции на возрастание, убывание и экстремумы. Вычисление площадей фигуры, ограниченной графиками функций. Анализ функции на выпуклость, вогнутость, точки перегиба.

    контрольная работа (81,1 K)
  • Периодизация этапов становления науки изучающей величины, количественные отношения и пространственные формы. История зарождения неевклидовой геометрии. Действия с комплексными числами. Фундаментальные представления об алгебре матриц и интегралов.

    курс лекций (687,7 K)
  • Изучение понятия и видов матрицы, рассмотрение алгоритма решения систем линейных уравнений в матричной форме. Исследование свойств пределов функций и примеров их нахождения. Характеристика основных задач, инструментов и методов аналитической геометрии.

    реферат (449,7 K)
  • Элементы теории множеств и операции над ними. Предмет и задачи теории вероятности, основные аксиомы дискретных пространств. Правила комбинаторики: выборка, сочетание. Схемы независимых испытаний Д. Бернулли, теоремы С.Д. Пуассона и Муавра-Лапласа.

    курс лекций (792,0 K)