- 3151. Теорема Виета
Жизнь и деятельность Франсуа Виета. Анализ формул, выражающих коэффициенты многочлена через его корни. Разложение квадратного трёхчлена с помощью формулы Виета. Решение квадратного уравнения путем подбора его корней. Характер решения задачи в общем виде.
- 3152. Теорема Виета
Франсуа Виет - выдающийся французский математик, автор основ элементарной алгебры, буквенных обозначений и исчислений; формулы Виета — выражение коэффициентов многочлена через его корни; используются для проверки правильности нахождения корней многочлена.
- 3153. Теорема Виета
Доказательство теоремы Виета, в том числе ее применение для приведенного и неприведенного квадратного уравнения. Практические задачи и ситуации, в которых может использоваться теорема, а также краткая биография французского математика Франсуа Виета.
- 3154. Теорема Вієта
Засвоєння змісту теореми Вієта для зведеного квадратного рівняння та для квадратного рівняння загального виду. Формування вміння відтворювати вивчені твердження, використовувати їх для розв'язування завдань. Визначення коефіцієнтів квадратного рівняння.
Сущность теоремы как математической формулы, выражающей поток векторного поля через замкнутую поверхность интегралом от дивергенции этого поля по объёму, ограниченному этой поверхностью. Последовательность доказательства теоремы Гаусса-Остроградского.
Расчет вероятностей безотказной работы зерноперерабатывающей системы. Эффективность и надежность функционирования сложных организационных систем. Изучение математической теории надежности. Способы взаимного расположения машин в технологической линии.
- 3157. Теорема Нётер
Доказательство теоремы Нетер, поиск аддитивных или асимптотически аддитивных интегралов движения в виде явных функций координат и скоростей при заданном виде функции Лагранжа без интеграции уравнений. Форма уравнений Лагранжа-Эйлера и ее инвариантность.
Рассмотрение геометрического обоснования серединного перпендикуляра. Определение положения точки, равноудаленной от концов прямой линии треугольника. Исследование сущности и математическое доказательство теоремы о серединном перпендикуляре к отрезку.
Общее понятие условной вероятности. Доказательство теоремы: вероятность произведения двух событий А и В равна произведению вероятности одного из этих событий на условную вероятность другого, вычисленную при условии, что первое событие имело место.
- 3160. Теорема Пифагора
Исторический обзор жизни и творческого пути философа. Пентаграмма (пятиконечная звезда) - пифагорейский символ здоровья. История теоремы Пифагора, ее геометрическая формулировка. Различные способы ее доказательства. Обобщение, области применения.
- 3161. Теорема Пифагора
Первые учителя Пифагора. Учреждение пифагорейской школы. Идеалистическое учение в античной философии. Числа у пифагорейцев. Открытие теоремы Пифагором. Классические доказательства теоремы Пифагора. Математические трактаты Древнего Китая и Древней Индии.
- 3162. Теорема Пифагора
Рассмотрение древней и современной формулировок теоремы Пифагора, ее значение в математике. Изучение алгебраического, геометрического и евклидового доказательств теоремы о равенстве квадрата гипотенузы прямоугольного треугольника сумме квадратов катетов.
- 3163. Теорема Пифагора
Ознакомление с первоначальной и современной формулировами теоремы Пифагоа. Представление наиболее простого, алгебраического, геометрического и Евклидового методов доказательств теоремы. Определение значения данной теоремы в математических науках.
Теорема Пифагора - жемчужина античной математики. Не алгебраические и алгебраические доказательства теоремы. Математические трактаты Древнего Китая. Сравнение доказательства Евклида с древнекитайскими или древнеиндийскими. Головоломка "Пифагор".
Обоснование значимости теоремы Пифагора, ее применение в геометрии. Биографические факты из жизни Пифагора. Обзор математических трактатов Древнего Китая, чертеж и доказательство теоремы Пифагора в них. Доказательство теоремы Пифагора в трудах Евклида.
История разработок и формирования теоремы Пифагора, причины ее популярности: простота – красота – значимость. Исследование некоторых классических доказательств теоремы Пифагора, известных из древних трактатов. Оценка важности и значимости данной теоремы.
История открытия теоремы Пифагора. Способы доказательства теоремы. Древнекитайское и древнеиндийское доказательства. Теорема Евклида и доказательство Хоукинса. Геометрическое доказательство методом Гарфилда. Доказательство теоремы Бхаскари-Ачарна.
Краткая биография Ж.А. Пуанкаре – французского математика, механики, физика, астронома и философа. Крупные достижения ученого. Теорема Пуанкаре и ее доказывание. Гомеоморфизм, односвязность, компактность фигур и их особенности. 7 проблем тысячелетия.
- 3169. Теорема Фалеса
Теорема Фалеса как одна из теорем планиметрии. Равенство отрезков на обеих секущих между собой. Способ определения расстояния от берега до видимого корабля с помощью свойства подобия треугольников. Установление высоты пирамиды Хеопса Фалесом по тени.
- 3170. Теорема Фалеса
Теорема Фалеса - одна из теорем планиметрии. Доказательство обобщенной теоремы (параллельные прямые отсекают на секущих пропорциональные отрезки). Другие геометрические теоремы, доказанные ученым. Их практическое использование при измерении расстояний.
Докозательство ведется применительно к плоскостной координатной системе xOy, т.е. при двух координатах Ox и Oy. Надобность в третьей и последующих координатах отпадает. Элементы xn и yn являются составными частями соответствующих числовых рядов.
Зростання і спадання функцій. Правила логарифмічного диференціювання. Схема дослідження функцій. Опуклість і угнутість кривої, точки перегину. Максимуми і мінімуми функції. Найбільше і найменше значення функції на відрізку. Асимптоти графіка функції.
Обзор теоремы Чебышева о распределении простых чисел, рассматриваются функции, приближающие простые числа, а также вводится новая функция, достаточно хорошо приближающая простые числа. Приводится обзор результатов по распределению простых чисел.
- 3174. Теоремы Менелая и Чевы
Теорема Менелая и пропорциональные отрезки в треугольнике. Пересечение медиан, биссектрис, средних перпендикуляров и высот треугольника, их деление в отношениях относительно вершины. Применение указанных теорем к геометрическим задачам на доказательство.
Доказательства классических теорем о неподвижных точках (в том числе и в бесконечномерном случае), их применения в теории дифференциальных уравнений. Сущность теоремы Банаха о сжатии полных метрических пространств, вычисление теоремы Брауэра для круга.
Обыкновенные дифференциальные уравнения (ОДУ) первого порядка, разрешенные относительно производной. Интегрирование ОДУ первого порядка. Доказательство теоремы Коши-Пикара о существовании и единственности решения задачи Коши для ОДУ первого порядка.
Формирование современного понимания функциональной зависимости. Достаточные условия экстремума функции. Нахождение экстремума с помощью производной. Определение предела функции в теореме Коши. Эквивалентность различных определений предела функции.
Исследование аналитических задач, возникающих перед субъектами расследования преступлений, связанных с установлением взаимосвязей между фигурантами преступления и обстоятельствами его совершения, такими как дата, время, место на основе теории графов.
Понятие о графе, способы его задания. Достижимость и обратная достижимость вершин графа. Графовые модели для оптимизации транспортных сетей и потоков, решения задач календарного планирования, задач о назначениях и других задач дискретной оптимизации.
Основные понятия теории множеств. Операции над ними. Свойства алгебраического тождества. Упорядоченные множества элементов. Структура и способы представления многомерных матриц. Правило получения обратной матрицы. Многомерно-матричное дифференцирование.