История открытия теоремы Пифагора. Способы доказательства теоремы. Древнекитайское и древнеиндийское доказательства. Теорема Евклида и доказательство Хоукинса. Геометрическое доказательство методом Гарфилда. Доказательство теоремы Бхаскари-Ачарна.
Теорема Пифагора - жемчужина античной математики. Не алгебраические и алгебраические доказательства теоремы. Математические трактаты Древнего Китая. Сравнение доказательства Евклида с древнекитайскими или древнеиндийскими. Головоломка "Пифагор".
Обоснование значимости теоремы Пифагора, ее применение в геометрии. Биографические факты из жизни Пифагора. Обзор математических трактатов Древнего Китая, чертеж и доказательство теоремы Пифагора в них. Доказательство теоремы Пифагора в трудах Евклида.
История разработок и формирования теоремы Пифагора, причины ее популярности: простота – красота – значимость. Исследование некоторых классических доказательств теоремы Пифагора, известных из древних трактатов. Оценка важности и значимости данной теоремы.
Краткая биография Ж.А. Пуанкаре – французского математика, механики, физика, астронома и философа. Крупные достижения ученого. Теорема Пуанкаре и ее доказывание. Гомеоморфизм, односвязность, компактность фигур и их особенности. 7 проблем тысячелетия.
- 3156. Теорема Фалеса
Теорема Фалеса как одна из теорем планиметрии. Равенство отрезков на обеих секущих между собой. Способ определения расстояния от берега до видимого корабля с помощью свойства подобия треугольников. Установление высоты пирамиды Хеопса Фалесом по тени.
- 3157. Теорема Фалеса
Теорема Фалеса - одна из теорем планиметрии. Доказательство обобщенной теоремы (параллельные прямые отсекают на секущих пропорциональные отрезки). Другие геометрические теоремы, доказанные ученым. Их практическое использование при измерении расстояний.
Докозательство ведется применительно к плоскостной координатной системе xOy, т.е. при двух координатах Ox и Oy. Надобность в третьей и последующих координатах отпадает. Элементы xn и yn являются составными частями соответствующих числовых рядов.
Зростання і спадання функцій. Правила логарифмічного диференціювання. Схема дослідження функцій. Опуклість і угнутість кривої, точки перегину. Максимуми і мінімуми функції. Найбільше і найменше значення функції на відрізку. Асимптоти графіка функції.
Обзор теоремы Чебышева о распределении простых чисел, рассматриваются функции, приближающие простые числа, а также вводится новая функция, достаточно хорошо приближающая простые числа. Приводится обзор результатов по распределению простых чисел.
- 3161. Теоремы Менелая и Чевы
Теорема Менелая и пропорциональные отрезки в треугольнике. Пересечение медиан, биссектрис, средних перпендикуляров и высот треугольника, их деление в отношениях относительно вершины. Применение указанных теорем к геометрическим задачам на доказательство.
Доказательства классических теорем о неподвижных точках (в том числе и в бесконечномерном случае), их применения в теории дифференциальных уравнений. Сущность теоремы Банаха о сжатии полных метрических пространств, вычисление теоремы Брауэра для круга.
Обыкновенные дифференциальные уравнения (ОДУ) первого порядка, разрешенные относительно производной. Интегрирование ОДУ первого порядка. Доказательство теоремы Коши-Пикара о существовании и единственности решения задачи Коши для ОДУ первого порядка.
Формирование современного понимания функциональной зависимости. Достаточные условия экстремума функции. Нахождение экстремума с помощью производной. Определение предела функции в теореме Коши. Эквивалентность различных определений предела функции.
Исследование аналитических задач, возникающих перед субъектами расследования преступлений, связанных с установлением взаимосвязей между фигурантами преступления и обстоятельствами его совершения, такими как дата, время, место на основе теории графов.
Понятие о графе, способы его задания. Достижимость и обратная достижимость вершин графа. Графовые модели для оптимизации транспортных сетей и потоков, решения задач календарного планирования, задач о назначениях и других задач дискретной оптимизации.
Основные понятия теории множеств. Операции над ними. Свойства алгебраического тождества. Упорядоченные множества элементов. Структура и способы представления многомерных матриц. Правило получения обратной матрицы. Многомерно-матричное дифференцирование.
Изучение теории множеств, их включения и равенства. Характеристика математической логики и предела последовательности функций. Определения первообразных и неопределенных интегральных исчислений. Анализ векторных функций. Тригонометрическая система.
Преподавание математики в школе. Разработка и обоснование методики проведения курса по выбору "тригонометрия: от плоскости к пространству" на старшей ступени общего образования. Роль тригонометрии в учебном процессе. Место курса в школьной программе.
Рассмотрение математических инструментов, используемых при обосновании новых результатов. Применение статистических методов: законы больших чисел, центральные предельные теоремы, условия наследования сходимости, линеаризации, принцип инвариантности.
Определение и свойства матриц, операции над ними. Практическое значение правила Крамера. Суть метода Гаусса. Взаимное расположение прямых на плоскости. Проекции вектора на ось. Сущность инверсии в перестановке чисел. Скалярное произведение векторов.
Обзор попыток создать классификатор видов происшествий, причин и оборудования, приводящих к несчастному случаю или травмам. Статистический метод анализа травматизма, который предусматривает изучение большого количества случаев по отрасли производства.
Изучение методов изображения пространственных форм на плоскости. Проецирование прямой линии. Определение натуральной величины прямой. Главные линии плоскости. Кривые линии и поверхности. Аксонометрические проекции. Решение метрических и позиционных задач.
Аналитическая и дифференциальная геометрия. Исследования Гаусса по неевклидовой геометрии. Обобщения теоремы Эйлера о многогранниках. Развитие концепции комплексного числа. Последовательности и ряды аналитических функций. Интегральная теорема Коши.
- 3175. Теория вектора
Характеристика вектора, как семейства параллельных между собой одинаково направленных и имеющих одинаковую длину отрезков. Сложение и равенство векторов, свойства операций над ними, скалярное произведение двух векторов. Доказательства и решения задач.
Подобие второго рода. Осевая симметрия. Следствия векторных формул. Алгебра преобразований и векторных формул, примеры решения основных задач с их использованием. Исследование векторных выражений. Вывод формул разложения на элементарные преобразования.
- 3177. Теория вероятностей
Предмет и задачи теории вероятностей. Вероятности случайных событий, классический и геометрический способы их вычисления. Значения вероятности произвольного события. Гипотезы и независимые события. Последовательность независимых испытаний. Схема Бернулли.
- 3178. Теория вероятностей
Случайное событие, его частота и вероятность. Теоремы сложения и умножения вероятностей. Формула полной вероятности (формула Бейеса). Дискретные случайные величины. Математическое ожидание и его свойства. Дисперсия непрерывной случайной величины.
- 3179. Теория вероятностей
Вероятность независимых событий. Вероятность того, что два конкретных человека будут отдыхать в одном доме отдыха. Вероятность денежного выигрыша в лотерее. Вероятность попадания на сборку бракованной детали. Вероятность полного выздоровления пациента.
- 3180. Теория вероятностей
Понятие о испытании и случайном событии, их совместимости, достоверности и взаимозависимости. Характеристика их суммы и произведений, справедливость сочетательного и дистрибутивного законов. Особенности определения вероятности и относительной частоты.