Математическое ожидание, дисперсия, доверительная вероятность. Общая схема метода Монте-Карло, который можно определить как метод моделирования случайных величин с целью вычисления характеристик их распределений. Вычисление интегралов методом Монте-Карло.
Сущность и схема метода Монте-Карло, оценка его погрешности и практическое использование для решения задач, связанных с системами массового обслуживания. Предельные теоремы теории вероятностей, применение способа усреднения подынтегральной функции.
Решение интегральных уравнений методом наибыстрейшего спуска. Теорема о минимуме квадратичного функционала и ее следствие. Разработка алгоритма приближенного решения обыкновенного интегрального уравнения. Постановка задачи, численная реализация на ЭВМ.
Основные понятия эконометрики. Виды и типы данных, используемых в эконометрических исследованиях. Применение классического метода наименьших квадратов для нахождения неизвестных параметров уравнения регрессии на примере модели линейной парной регрессии.
Рассмотрение сущности метода наименьших квадратов и линейной парной регрессии. Вывод формул для нахождения коэффициентов линейной парной регрессии. Аппроксимация функций с помощью метода наименьших квадратов. Нахождение параметров линейной функции.
Правила проведения количественного анализа. Расчёт неизвестных величин по результатам измерений, содержащих случайные ошибки. Оценка отклонения точки от прямой. Основной принцип метода наименьших квадратов. Построение градуировки в спектрофотометрии.
Сущность и история разработки метода наименьших квадратов. Примеры решения уравнений в матричном виде по способу наименьших квадратов. Свойства оценок на основе метода наименьших квадратов. Парная линейная и нелинейная регрессия, методы их оценивания.
Использование метода наименьших квадратов для отыскания приближенных зависимостей между изучаемыми экспериментальными величинами. Решение уравнений в матричном виде. Нахождение интервальных оценок неизвестных параметров и доверительного интервала.
Сущность и содержание метода наименьших квадратов, свойства оценок на его основе. Парная линейная регрессия. Системы одновременных уравнений, направления ее исследования и порядок решения. Авторегрессионное преобразование. Применение МНК в экономике.
Состав системы уравнений для определения коэффициентов многочленов наилучшего среднеквадратичного приближения. Таблица значений многочленов наилучшего среднеквадратичного приближения. Графики аппроксимируемой функции, заданной на дискретном множестве.
Методы решения экстремальных задач с нелинейной целевой функцией. Решение задач стохастического нелинейного программирования. Вычислительные алгоритмы нелинейного программирования. Стратегия градиентных (наискорейшего спуска) методов оптимизации.
Методи наближення функцій. Метод найменших квадратів як ефективний спосіб розв'язання задачі апроксимації функцій, його суть та основні формули. Лініалізація, розв’язання та побудова графіків функцій. Області застосування методу найменших квадратів.
Способи вирівнювання за принципом найменших квадратів в геодезичних мережах. Рівняння поправок до виміряних величин. Параметричне рівняння поправок для дирекційного кута сторони геодезичної мережі. Параметричне рівняння поправок для заданого напрямку.
- 3104. Метод Нелдера-Міда
Дослідження збіжності методу Нелдера-Міда в контексті безумовної та умовної оптимізації. Особливості роботи данного методу для допустимих областей: опуклої, не випуклої, з лінійними обмеженнями. Вибір птимальної довжини ребра початкового симплексу.
- 3105. Метод непараметрической оценки закона распределения случайного параметра по малому числу наблюдений
Разработка и исследование метода проверки гипотез о виде функции плотности распределения случайной величины в условиях значительной априорной неопределенности. Особенности оценки потенциальной возможности повышения достоверности их классификации.
- 3106. Метод Ньютона
Знаходження кореня рівняння заданої неперервної функції на певному відрізку. Умови ітераційних обчислень у методі Ньютона. Критерії умов завершення розрахунку для алгоритму. Недоліки методу Ньютона. Обчислення квадратного кореня за його вказаного методу.
- 3107. Метод Ньютона
Общая характеристика метода Ньютона, знакомство с особенностями применения. Анализ способов записи формального представления по формуле Тейлора, основные проблемы. Рассмотрение процесса вычисления приближенного значения корня, использование выражений.
Сущность и принципы использования метода Ньютона, его геометрическая интерпретация, примеры применения на практике, алгоритм решения задач. Механизм решения систем нелинейных алгебраических уравнений. Содержание и значение методов спуска и итерации.
Описание методов построения траектории объекта наблюдения. Анализ точности определения параметров движения по методу N-пеленгов и N-полиномов. Описание свойств метода расчета траектории нелинейно движущегося объекта с использованием угломерной информации.
Изучение применения метода орбит в теории интерполяции операторов, а также в некоторых вопросах системного анализа. Оптимальное интерполяционное пространство для весовых банаховых пар. Применение метода орбит к доказательству существования базиса.
Оценка эффективности деятельности операторов автоматизированного командного пункта в процессе тренажной подготовки. Система оценивания действий операторов. Метод получения обобщенной оценки деятельности оператора с использованием нечетких термов.
Основные инвариантные свойства параллельного проектирования: проекция точки есть точка; проекция прямой на плоскость есть прямая; проекции взаимно параллельных прямых также взаимно параллельны. Изображение на плоскости треугольника, квадрата, ромба.
Сущность и разработка метода парных сравнений, сферы его использования и интерпретация результатов. Процедура сбора данных. Условие транзитивности и причины её нарушения. Шкалограммный анализ Гуттмана, этапы построения шкалы и проверка её качества.
Метод планирования действий автономных агентов, использованный при создании команды "PSI", для участия в чемпионате мира по игре в футбол среди программ и роботов RoboCup’99. Элементарные планы как "основные навыки" агента. Назначение планирующей системы.
Формування в учнів розуміння схеми дій, що відповідають змісту поняття "метод площ" і вмінь застосовування цієї схеми під час розв'язування задач. Варіанти математичного диктанту. Виконання письмових вправ за готовими рисунками. Приклади тестових завдань.
Метод математической индукции в решении задач на делимость. Применение метода математической индукции к суммированию рядов и доказательству неравенств. Решение геометрических задач на вычисление. Роль индуктивных выводов в экспериментальных науках.
Сущность метода половинного деления и шагового метода для решения нелинейных уравнений. Примеры решения нелинейных уравнений и определение их корня в программах в Pascal, Microsoft Excel, MathCAD. Анализ результатов и построение соответствующих графиков.
Специфіка системи інтегральних рівнянь для ймовірностей нерозорення на нескінченному інтервалі часу для процесу ризику у випадковому марковському середовищі. Характеристика та особливості класичного актуарного інтегрального рівняння типу Вольтерра.
Розгляд класичного процесу ризику (модель Крамера-Лундберга), що описує стохастичну еволюцію капіталу страхової компанії. Виведення інтегральних рівнянь для ймовірності розорення як функції початкового капіталу компанії для узагальнень процесу ризику.
Построение несистематических сверточных кодов перемежения с произвольной скоростью кодирования, параметры которых полностью задаются модифицированным обобщенным порождающим многочленом. Применение помехоустойчивых кодов для исправления пакетов ошибок.
