Основы математического анализа
Определение основных понятий, связанных с отображениями. Предел числовой и ограниченной последовательности. Условие непрерывности функции. Краткая характеристика техники дифференцирования, особенности ее применения. Использование формулы Тейлора.
Рубрика | Математика |
Вид | учебное пособие |
Язык | русский |
Дата добавления | 02.04.2013 |
Размер файла | 370,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
HTML-версии работы пока нет.
Cкачать архив работы можно перейдя по ссылке, которая находятся ниже.
Подобные документы
Понятие возрастающей числовой последовательности. Формула бинома Ньютона. Число положительных слагаемых. Определение ограниченности последовательности чисел. Предел монотонной и ограниченной последовательностей. Показательный рост или убывание.
презентация [87,1 K], добавлен 21.09.2013Вычисление математических последовательностей и определение числа, которое называется пределом последовательности. Методы расчетов предела функции. Произведение бесконечно малой функции и ограниченной функции. Определение предела последовательности.
контрольная работа [114,0 K], добавлен 17.12.2010Предел числовой последовательности. Сравнение бесконечно малых величин. Второй замечательный предел. Теорема Коши о сходимости числовой последовательности. Использование бинома Ньютона. Замена сомножителей на эквивалентные им более простые величины.
контрольная работа [152,1 K], добавлен 11.08.2009Члены последовательности и их изображение на числовой оси. Виды последовательностей (ограниченная, возрастающая, убывающая, сходящаяся, расходящаяся), их практические примеры. Определение и геометрический смысл предела числовой последовательности.
презентация [78,9 K], добавлен 21.09.2013История развития теории пределов. Сущность и виды числовой последовательности, методика вычисления и определение свойств ее предела. Доказательство теоремы Штольца. Практическое применение предела последовательности в экономике, геометрии и физике.
курсовая работа [407,2 K], добавлен 16.12.2013Использование формулы Тейлора для разложения основных элементарных функций в степенной ряд. Сущность форм Лагранжа и Пеано, примеры вычисление пределов функций. Особенности использования принципа разложения в ряд на ЭВМ в режиме реального времени.
курсовая работа [107,1 K], добавлен 29.04.2011Определение предела последовательности. Понятие производной и правила дифференцирования. Теоремы Роля, Лангража, правило Лапиталя. Исследования графиков функций. Таблица неопределенных и вычисление определенных интегралов. Функции нескольких переменных.
презентация [917,8 K], добавлен 17.03.2010Общее понятие числовой последовательности. Предел функции в точке. Бесконечно большая и малая функция. Связь между функцией, ее пределом и бесконечно малой функцией. Признаки существования пределов. Основные теоремы о пределах: краткая характеристика.
презентация [137,0 K], добавлен 25.01.2013Понятие и история формирования категории "последовательность", ее значение в современной математике. Свойства и аналитическое задание последовательности, роль в развитии других областей знания. Решение задач на вычисление пределов последовательностей.
презентация [665,0 K], добавлен 17.03.2017Теоремы дифференциального исчисления, как основа для правила Лопиталя и формулы Тейлора. Правило Лопиталя и методы раскрытия всех типов неопределенностей. Вывод формулы Тейлора и ее применение для нахождения эквивалентных функций и вычисления пределов.
курсовая работа [261,6 K], добавлен 05.09.2009