Изучение предмета и методов математической статистики. Расчет дисперсии и среднеквадратических (стандартных) отклонений. Описание мер связи между переменными и выборочного распределения. Характеристика эмпирической функции распределения гистограммы.
Предмет и методы математической статистики. Основные понятия выборочного метода. Вероятностные модели порождения данных. Эмпирическая функция распределения, гистограмма. Формула Стерджесса. Поточечная сходимость по вероятности гистограммы к плотности.
Особенности свойств градиента, которые лежат в основе ряда итерационных методов минимизации функций. Сущность градиентного метода. Сходимость метода скорейшего спуска. Проблема отсутствия надежных критериев окончания счета с требуемой точностью.
Ионообменная технология формирования волноводных структур, ее особенности и принципы, используемые методы и приемы, оценка практической эффективности. Моделирование оптического распространения, технологических параметров исследуемого устройства.
Численные методы решения математических задач. Прямое статистическое моделирование при помощи получения и преобразования случайных чисел. Применение метода Монте-Карло в вычислительной аэродинамике. Разработка алгоритма для кинетических уравнений.
Определение нормативных и расчетных значений характеристики грунта. Вычисление среднего арифметического значения удельного веса грунта. Определение смещенной оценки среднего квадратичного отклонения характеристики. Нормативное значение удельного веса.
Определение унимодальности функции. Точные и приближенные методы поиска экстремума. Метод перебора, по разрядного поиска, дихотомии, золотого сечения, средней точки, хорд и метод Ньютона. Сравнение методов оптимизации по скорости вычисления и точности.
Рассмотрение системы Energy Star как международного стандарта энергоэффективности потребительских товаров. Сертификация клапана предохранительного пружинного прямого действия. Формы подтверждения соответствия. Экономическая эффективность стандартизации.
Расчет показательной статистики и коэффициента корреляции. Построение парных и множественных моделей, выбор наиболее оптимальных из них. Временной ряд подготовка данных для прогноза. Построение прогноза методом Брауна. Выбор коэффициента сглаживания.
Ознакомление с основными правилами составления таблиц. Характеристика процесса сглаживания табличных данных и графиков. Исследование и анализ методов интерполяции и экстраполяции. Установление параметров и видов законов распределения случайных величин.
Значение арифметических задач для умственного развития детей дошкольного возраста. Основные виды и компоненты арифметических задач. Методика и этапы обучения детей решению математических задач. Анализ арифметических задач, составленных дошкольниками.
Математическое описание динамических функций. Определение взаимосвязей входного и выходного сигнала системы через нахождение оператора. Приближенное описание случайных процессов. Задачи статистической обработки информации. Понятие об объекте измерения.
Процедуры определения фрактальной размерности профиля и поверхности. Фрактал как фрагментированная геометрическая форма, которая может быть разделена на части, каждая из которых (приблизительно) представляет собой уменьшенную копию всего целого.
Расчет числа каналов для осуществления связи между двумя пунктами с заданным расстоянием. Поиск решения задачи по теореме равновесия. Решение двухкритериальной задачи линейного программирования методом идеальной точки. Решение уравнения искомой прямой.
Нахождение стационарных точек функций двух и трех переменных, вычисление их экстремальных точек и значений. Составление функции Лагранжа. Решение задачи линейного программирования симплекс-методом. Методы определения начального плана транспортной задачи.
Предел функций многих переменных. Анализ пределов и непрерывности в многомерных пространствах. Нахождение частной производной и кратное интегрирование. Фундаментальная теорема анализа функций многих переменных. Теоремы интегрирования векторного анализа.
Определение точек условного экстремума, экстремальные значения функции. Порядок, принципы решения задач квадратичного программирования. Вычисление числа взлетно-посадочных полос для самолетов с учетом заданной вероятности ожидания. Решение матричных игр.
Математическая модель задачи оптимизации производства. Составление задачи двойственной к исходной. Транспортная задача с использование вычислительных средств Excel. Решение задачи о назначениях преподавателей на проведение занятий с заданными условиями.
Теория массового обслуживания, ее применение в розничной торговле при анализе количества обслуживаемых покупателей и продолжительности их обслуживания. Выведение математических методов анализа процессов обслуживания. Статистические закономерности.
Задачи линейного программирования и их решение с помощью методов оптимизации. Построение целевой функции и определение ее минимального и максимального значений при заданных условиях-ограничениях. Решение данных задач симплекс-методом и заполнение таблиц.
- 2451. Методы оптимизации
Построение канонической формы задачи линейного программирования и ее графическое решение. Построение допустимой области. Решение задачи в специальной форме симплекс-методом, методом искусственного базиса. Построение и решение пары двойственных задач.
- 2452. Методы оптимизации
Решения типовой задачи оптимизации поисковым методом Хука-Дживса. Начальная базисная точка. Локальное поведение функции. Изображение блок-схемы алгоритма. Современные технологии автоматизации. Применение унифицированной системы автоведения поезда.
- 2453. Методы оптимизации
Методы одномерной безусловной оптимизации. Нахождение промежутка локализации точки минимума методом начального поиска промежутка. Итерационные методы решения задач безусловной оптимизации. Приведение задачи линейного программирования к каноническому виду.
- 2454. Методы оптимизации
Задачи одномерной безусловной минимизации. Численные методы поиска многомерного безусловного экстремума. Свойство унимодальной функции. Метод поразрядного поиска, перебора, деления отрезка пополам, золотого сечения, средней точки, Ньютона и хорд.
Основные принципы управления. Идентификация объектов управления, алгоритмы их оптимизации. Численные, градиентные, квазиньютоновские, комбинированные методы оптимизации. Аналитические методы исследования невыпуклых задач. Сущность проблемы нелокальности.
Задачи, решение которых состоит в нахождении оптимальных вариантов для строительной фирмы в поддержании стабильного дохода и минимальных расходов. Наем работников для оптимизации прибыли. Оптимальный план постройки зданий при имеющихся ресурсах.
Составление обобщенной функции Лагранжа. Необходимые условия экстремума первого порядка. Анализ выполнения достаточных условий экстремума. Нахождение минимума функции методом Нелдера–Мида. Определение вершин многогранника сопряженных направлений.
Методика проведения оптимизации заданного выражения. Нахождение числа, при котором функция принимает оптимальное значение. Аналитический способ нахождения локального минимума. Методы одномерного поиска. Одномерная оптимизация с использованием производных.
Построение функции принадлежности для определения важности дисциплины для будущей специальности с помощью применения метода парных сравнений. Использование участия специалистов в анализе и решении проблемы при применении метода экспертного опроса.
Характеристика трех наиболее употребительных приближенных способов вычисления определенных интегралов в математике: методов прямоугольников, трапеций, парабол. Использование определенных формул для расчета их по числу значений подынтегральной функции.