• Системы линейных алгебраических уравнений и метод последовательного исключения неизвестных. Матрица, обратная матрица и метод Крамера. Определение векторного пространства и его нетривиальная комбинация. Системы векторов и алгебраические переходы.

    учебное пособие (1,9 M)
  • Понятие линейной комбинации векторов. Выражение члена с номером через остальные слагаемые. Свойства линейнозависимой системы векторов. Геометрический смысл линейной зависимости, коллинеарности и компланарности. Выражение переменной через другие значения.

    презентация (44,0 K)
  • Основные различия между прямоугольной системой координат и ортонормированным базисом. Способы определения коллинеарности векторов плоскости. Характеристика пространственного базиса и аффинной системы координат. Примеры задач по геометрии, их решение.

    контрольная работа (519,9 K)
  • Линейная зависимость векторов. Уравнение прямой, проходящей через две точки. Общее уравнение кривых второго порядка. Каноническое уравнение гиперболы и эллипса. Квадратичные формы переменных. Тригонометрическая форма комплексного числа, Bзвлечение корня.

    контрольная работа (71,8 K)
  • Построение оптимального плана для задачи линейной оптимизации, с учетом всех ограничений многоугольника. Графическое выражение числового значения уравнения. Рассмотрение практического применения математического способа вычисления координат фигуры.

    задача (198,3 K)
  • Изучение принципов работы с пакетом электронных таблиц MS Excel и такими его компонентами, как вставка формул, подбор параметра, поиск решения. Постановка и решение задач линейной оптимизации средствами пакета MS Excel на примере конкретного задания.

    курсовая работа (1,0 M)
  • Определение зависимости одной физической величины от другой. Метод линейной парной регрессии как наилучший способ для воспроизведения искомой зависимости и решение задач по имеющимся экспериментальным точкам с помощью программного обеспечения Mathcad.

    контрольная работа (1,5 M)
  • Сущность линейной регрессии как метода восстановления зависимости между двумя переменными. Особенности регрессионной модели. Рассмотрение основных функций предиктора. Характеристика метода наименьших квадратов. Порядок определения линейной регрессии.

    краткое изложение (949,7 K)
  • F критерий Фишера как параметр оценки качества регрессии. Пример дисперсионного анализа результатов регрессии. Оценка значимости коэффициентов регрессии и корреляции. Значение t-критерия Стьюдента и доверительных интервалов. Средняя ошибка аппроксимации.

    презентация (81,4 K)
  • Исследование линейной устойчивости относительно нормальных возмущений адвективного течения во вращающемся слое жидкости с твердыми границами методом дифференциальной прогонки. Амплитуды возмущений скорости и температуры в виде системы уравнений.

    статья (203,4 K)
  • Вычисление определителей, матрицы и их свойства. Решение систем линейных уравнений и типовых примеров задания 1 РГР. Векторные и скалярные величины. Разложение вектора по координатным осям. Длина и направление отрезка. Прямая линия на плоскости.

    методичка (656,6 K)
  • Освоение графического метода решения задач линейного программирования. Оптимальный недельный план производства, при котором прибыль будет максимальной. График оптимизационной задачи. Координаты вершин многоугольника допустимых решений и значения функции.

    лабораторная работа (21,6 K)
  • Математическая модель экономической задачи. Допустимое решение задачи линейного программирования. Основные теоремы линейного программирования. Алгоритм геометрического метода решения задач линейного программирования. Задача производственного планирования.

    лекция (138,2 K)
  • Классификация проблем принятия решений. Примеры аналоговых, физических и математических моделей. Принятие решений в условиях определенности. Графический метод решения задач линейного программирования, многоугольник решений, максимум целевой функции.

    лекция (1,5 M)
  • Постановка, стандартные формы записи задачи линейного программирования, способы их решения. Основные понятия и определения теории графов, сетевая модель как графическая модель комплекса работ. Математическая формализация и алгоритмизация игровых задач.

    курсовая работа (497,6 K)
  • Изучение методов линейного программирования. Особенности их использования при решении экономических, промышленных и организационных задач. Нахождение максимума и минимума линейной функции. Геометрическое истолкование задачи линейного программирования.

    презентация (466,6 K)
  • Формулировка задачи линейного программирования. Особенности задачи линейного программирования, система ограничений которой задана в виде неравенств. Графический метод решения задач данного типа. Определение минимального значения линейной функции.

    реферат (17,2 K)
  • Геометрическая интерпретация задачи линейного программирования. Методы исследования и отыскания наибольших и наименьших значений функции, на неизвестные которой наложены линейные ограничения. Условный экстремум функции. Векторная и матричная форма записи.

    реферат (43,1 K)
  • Исторические сведения о зарождении уравнения. Первоначальное значение термина алгебра. Зарождение искусства решения уравнений. Значительный вклад в развитие языка алгебры Ф. Виета. Усовершенствование теории уравнений с применением изобретенных символов.

    контрольная работа (616,0 K)
  • Решение систем линейных алгебраических уравнений как одна из основных задач вычислительной линейной алгебры, рассмотрение основных способов. Общая характеристика метода Гаусса. Анализ схемы единственного деления. Знакомство с особенностями метода Зейделя.

    курсовая работа (51,8 K)
  • Графы и их использование для описания сложно структурированной информации. Задача нахождения минимального остовного дерева взвешенного неориентированного графа как одна из самых известных алгоритмических проблем комбинаторной оптимизации в математике.

    дипломная работа (920,1 K)
  • Построение общего решения характеристического однородного уравнения. Запись неоднородных дифференциальных уравнений второго порядка с постоянными коэффициентами и специальной правой частью. Применение метода Лагранжа вариации произвольных постоянных.

    методичка (69,6 K)
  • Исследование условий однородности линейных уравнений. Выделение совокупности линейно-независимых частных решений. Определитель Вронского n–го порядка, составленный из решений фундаментальной системы. Основные свойства однородных ЛДУ n-го порядка.

    презентация (34,9 K)
  • Решение систем линейных алгебраических уравнений. Вычисление обратной матрицы методом Гаусса. Основные методы решения нелинейных однородных (скалярных) уравнений. Построение интерполяционного полинома. Сущность аппроксимация методом наименьших квадратов.

    учебное пособие (292,2 K)
  • Матричная форма записи алгебраических операций. Совместные и несовместные системы линейных уравнений. Решение задач матричным методом. Исследование однородной системы методом Гаусса. Вычисление определителя матрицы. Особенности линейных преобразований.

    контрольная работа (256,6 K)
  • Построение на плоскости области решений линейных неравенств и геометрическое решение максимального и минимального значения целевой функции в этой области. С помощью симплекс-метода определение максимума целевой функции при данной системе ограничений.

    контрольная работа (75,7 K)
  • Линейные ограниченные операторы в банаховых пространствах. Векторные пространства над полем. Изоморфизмом векторных пространств и оператор умножения на функцию. Основные свойства линейности интеграла. Решение сопряженного однородного уравнения.

    реферат (246,2 K)
  • Общие сведения о системах дифференциальных уравнений. Критерий линейной независимости, определитель Вронского. Метод сведения к одному уравнению более высокого порядка. Решение видоизмененным методом Эйлера и способом неопределенных коэффициентов.

    реферат (1,3 M)
  • Условия ортогональности линейного преобразования. Независимость ортонормированной системы векторов. Стандартное евклидово пространство и ортогональные матрицы. Геометрический смысл собственного преобразования А. Доказательства леммы. Индукция векторов.

    лекция (101,6 K)
  • Сущностная характеристика и особенности геометрии Лобачевского и Римана. Примеры теорем Неевклидовых геометрий. Неевклидовы геометрии в плане дифференциальной геометрии и в виде проективных моделей. Основные свойства и специфика линейных преобразований.

    курсовая работа (75,5 K)