- 6601. Уравнения с модулем
Решение уравнений с модулем методом последовательного раскрытия модуля; метод интервалов (разбиения числовой прямой на промежутки), при помощи зависимостей между числами, их модулями и квадратами чисел. Использование геометрической интерпретации модуля.
- 6602. Уравнения с модулями
Понятие модуля (абсолютной величины) действительного числа. Основные свойства модуля и его геометрический смысл. Графическое решение квадратных уравнений. Схемы решений основных типов уравнений. Особенности решения уравнения со "сложным" модулем.
Понятие и геометрический смысл модуля. Изучение основных видов уравнений и способов их решений. Способы решения простейших уравнений с модулями. Применение метода интервалов для решения всех типов уравнений с модулями. Уравнения со "сложным" модулем.
- 6604. Уравнения с параметрами
Cистематизация и обобщение видов уравнений с параметрами и методы их решения. Случаи, когда исходное уравнение не является квадратным. Значения параметра a, для которых все корни уравнения отрицательны. Свойства логарифмов и методы замены переменной.
Разработка метода исследования дифференциальных уравнений с-образными коэффициентами с помощью аппроксимирующих семейств операторов, являющихся возмущениями исходного оператора. Применение теории к исследованию уравнений с-образными коэффициентами.
Актуальность постановки задачи использования многоствольных артиллерийских пушек для заглубления строительных элементов в грунт. Уравнения энергетического баланса при выстреле из многоствольных пушек с различными условиями заряжания каждого ствола.
Составление уравнений связи, измеренных длин функционально связанных с параметрами обратной геодезической задачи. Определение веса измеренных величин и значений сторон, вычисленных по приближенным координатам. Составление каталога уравненных координат.
Схема свободного полигонометрического хода с измеренными горизонтальными углами и тремя гиросторонами, его строгое уравнивание коррелятным способом. Вычисление дирекционных углов сторон полигона, определение их средней квадратической погрешности.
Обгрунтування методу усереднення для нових класів нелінійних ДФР із початковими і крайовими умовами. Побудова ефективних, залежних від малого параметра, оцінок похибки методу усереднення. Дослідження існування та єдиності розв'язку сформульованих задач.
Побудова асимптотичних розв'язків рівнянь керованого руху. Математичне дослідження складних систем. Метод розв'язування задачі оптимального керування з термінальним функціоналом на траєкторіях із запізненням. Оцінка властивостей множин досяжності.
Методи усереднення задач Діріхле для нелінійних еліптичних рівнянь другого порядку в змінних областях. Умови збіжності послідовності розв'язків нелінійних задач в перфорованих областях. Гранична задача з додатковим членом, що має місткісний характер.
Інтегральні та поточкові оцінки розв’язків відповідних модельних нелінійних еліптичних та параболічних задач Діріхле в областях з тонкими порожнинами. Асимптотичний розклад для послідовності розв’язків задач, які розглядаються та збіжність усіх членів.
Использование традиционной формы вида усеченной пирамиды в строительстве древнеегипетских пирамид. Правила вычисления и построения правильной усеченной пирамиды, а также расчет площади через полупроизведение суммы периметров оснований и апофемы.
- 6614. Усечённая пирамида
Изучение многогранника с n-угольными гранями в параллельных плоскостях и четырёхугольниках. Анализ построения правильной усеченной пирамиды. Расчет площади боковых поверхностей многоугольника, по теореме Пифагора об основаниях диагонального сечения.
Особенность модификации метода выделения переменных, уменьшающая сложность получаемых промежуточных форм за счет реализации выделения группы переменных последовательностью шагов, называемых циклами. Проведение исследования получения пустого множества.
Теорема гомотопической инвариантности для некоторых когомологий полилогарифмических комплексов. Использование результатов для построения интересных классов гиперболических многогранников по данным алгебраической геометрии. Мотивные когомологии поля.
Асимптотические представления некоторых типов решений одного класса нелинейных неавтономных дифференциальных уравнений второго порядка и достаточные условия существования таких решений. Медленно меняющаяся функция. Применение правила Лопиталя.
Решение некоторых типов линейных интегро-дифференциальных уравнений с аналитическими функциями с помощью метода степенных рядов. Условия для алгоритмизации задач. Линейные интегро-дифференциальные уравнения с пропорциональным запаздыванием аргумента.
Условия Фукса, необходимые и достаточные для отсутствия в интегралах критических алгебраических особых точек. Доказательство теоремы Пенлеве о том, что интегралы рассматриваемых интегральных уравнений не имеют подвижных существенно особых точек.
- 6620. Условная вероятность
Изложение методов решения задач на нахождение условной вероятности: вероятность суммы двух несовместимых событий; вероятность совместного появления двух зависимых событий, равная произведению вероятности одного из них на условную вероятность второго.
Методика выполнения построчного ортонормирования матричного уравнения краевых условий на левом участке. Характеристика специфических особенностей осуществления замены метода численного интегрирования Рунге-Кутта в алгоритме прогонки С.К. Годунова.
- 6622. Устные упражнения как одно из средств формирования математической культуры учащихся V-IX классов
Анализ психолого-педагогической и научно-методической литературы и определение современного состояния методики организации устных упражнений. Активизация мыслительной деятельности учащихся на уроках математики посредством устных и письменных упражнений.
Устный счет и устные вычислительные приемы и навыки в процессе обучения математики в начальной школе. Формирование навыков устного счета. Приемы развития и формирования устных вычислительных навыков. Проведение педагогического эксперимента и исследования.
Алгоритмы идентификации для обеспечения качества управления системой. Линейная дискретная динамическая система с использованием мерного вектора шума объекта с нулевым математическим ожиданием и ковариационной матрицей. Проявление численной неустойчивости.
Понятие и классификация динамических систем. Исследование кривых, определяемых дифференциальными уравнениями. Линейный анализ устойчивости динамических систем. Математический анализ бифуркации "двукратное равновесие". "Мягкие" и "жесткие" бифуркации.
Система с постоянной положительной матрицей. Линейная функция Ляпунова. Прикладные задачи с положительными переменными. Условие устойчивости общих линейных систем. Траектории агентов в притягивающем параллелепипеде. Функция Ляпунова для уравнения.
Построение области асимптотической устойчивости одного скалярного дифференциально-разностного уравнения с одним запаздыванием и периодическим кусочно-постоянным коэффициентом в плоскости параметров уравнения. Задача Коши для дифференциального уравнения.
Свойства систем дифференциальных уравнений. Исследование предельного множества траекторий. Траектории линейных систем на плоскости. Линейные однородные системы с периодическими коэффициентам. Устойчивость решений систем дифференциальных уравнений.
Исследование устойчивости модели нейтрофиломоноцитопоэза. Вычисление системы уравнений, описывающих созревание клеток при помощи критерия Рауса-Гурвица. Определение пороговых значений параметров модели, при которых система становится неустойчивой.
Исследование асимптотической устойчивости и устойчивости в среднем квадратичном линейных и нелинейных систем со случайной структурой и случайным условием скачка фазового вектора. Анализ задач управления и стабилизации стохастических систем со скачками.
