Условия существования и асимптотика некоторого класса решений дифференциальных уравнений второго порядка

Асимптотические представления некоторых типов решений одного класса нелинейных неавтономных дифференциальных уравнений второго порядка и достаточные условия существования таких решений. Медленно меняющаяся функция. Применение правила Лопиталя.

Рубрика Математика
Вид статья
Язык русский
Дата добавления 27.06.2016
Размер файла 430,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Виды дифференциальных уравнений: обыкновенные, с частными производными, стохастические. Классификация линейных уравнений второго порядка. Нахождение функции Грина, ее применение для решения неоднородных дифференциальных уравнений с граничными условиями.

    курсовая работа [4,8 M], добавлен 29.04.2013

  • Система двух нелинейных обыкновенных дифференциальных уравнений, порождённая прямым и обратным преобразованиями Беклунда высшего аналога второго уравнения Пенлеве. Аналитические свойства решения, наличие у системы четырёхпараметрических семейств решений.

    реферат [104,0 K], добавлен 28.06.2009

  • Описание колебательных систем дифференциальными уравнениями с малым параметром при производных, асимптотическое поведение их решений. Методика регулярных возмущений и особенности ее применения при решении задачи Коши для дифференциальных уравнений.

    курсовая работа [1,5 M], добавлен 15.06.2009

  • Понятия и решения простейших дифференциальных уравнений и дифференциальных уравнений произвольного порядка, в том числе с постоянными аналитическими коэффициентами. Системы линейных уравнений. Асимптотическое поведение решений некоторых линейных систем.

    дипломная работа [395,4 K], добавлен 10.06.2010

  • Производные основных элементарных функций. Правила дифференцирования. Условия существования и единственности задачи Коши. Понятие дифференциальных уравнений, их применение в моделях экономической динамики. Однородные линейные ДУ первого и второго порядка.

    курсовая работа [1,0 M], добавлен 22.10.2014

  • Система Ляпунова - случай одной степени свободы. Необходимые и достаточные условия существования периодических решений. Применение алгоритма Ляпунова для построения приближенного периодического решения задачи Коши для системы дифференциальных уравнений.

    курсовая работа [243,8 K], добавлен 11.05.2012

  • Механическая интерпретация нормальной системы дифференциальных уравнений первого порядка. Свойства решений автономных систем. Предельное поведение траекторий, циклы. Функция последования и направления их исследования, оценка характерных параметров.

    курсовая работа [2,0 M], добавлен 24.09.2013

  • Появление понятия функций Ляпунова. Развитие теории устойчивости движения. Применение функций Ляпунова к исследованию продолжимости решений дифференциальных уравнений. Методы построения функций Ляпунова, продолжимость решений уравнений третьего порядка.

    дипломная работа [543,4 K], добавлен 29.01.2010

  • Понятие о голоморфном решении задачи Коши. Теорема Коши о существовании и единственности голоморфного решения задачи Коши. Решение задачи Коши для линейного уравнения второго порядка при помощи степенных рядов. Интегрирование дифференциальных уравнений.

    курсовая работа [810,5 K], добавлен 24.11.2013

  • Характеристика уравнений с разделяющимися переменными. Сущность метода Бернулли и метода Лагранжа, задачи Коша. Решение линейных уравнений n-го порядка. Фундаментальная система решений - набор линейно независимых решений однородной системы уравнений.

    контрольная работа [355,9 K], добавлен 28.02.2011

  • Существование и единственность решений дифференциальных уравнений. Геометрическая интерпретация решений. Линейные и нелинейные системы. Дифференциальные уравнения, моделирующие динамику популяций конкурирующих видов, их решения и фазовые портреты.

    дипломная работа [2,5 M], добавлен 27.06.2012

  • Практическое решение дифференциальных уравнений в системе MathCAD методами Рунге—Кутты четвертого порядка для решения уравнения первого порядка, Булирша — Штера - системы обыкновенных дифференциальных уравнений первого порядка и Odesolve и их графики.

    лабораторная работа [380,9 K], добавлен 23.07.2012

  • Приведение к системе уравнений первого порядка. Разностное представление систем дифференциальных уравнений. Сеточные методы для нестационарных задач. Особенность краевых задач второго порядка. Разностные схемы для уравнений в частных производных.

    реферат [308,6 K], добавлен 13.08.2009

  • Решение задачи Коши для дифференциального уравнения. Погрешность приближенных решений. Функция, реализующая явный метод Эйлера. Вычисление погрешности по правилу Рунге. Решение дифференциальных уравнений второго порядка. Условие устойчивости для матрицы.

    контрольная работа [177,1 K], добавлен 13.06.2012

  • Определение дифференциальных уравнений в частных производных параболического типа. Приведение уравнения второго порядка к каноническому виду. Принцип построения разностных схем. Конечно-разностный метод решения задач. Двусторонний метод аппроксимации.

    дипломная работа [603,8 K], добавлен 24.01.2013

  • Правила вычисления коэффициентов n-образов. Рассмотрение алгоритмов решения линейных ОДУ с переменными коэффициентами второго и произвольного порядков. Общепринятые способы определения частного решения неоднородного дифференциального уравнения.

    книга [1,7 M], добавлен 03.10.2011

  • Роль идей и методов проективной геометрии в математической науке. Закономерности кривых второго порядка и кривых второго класса, основные теоремы Паскаля и Брианшона, описывающие замечательное свойство шестиугольника вписанного в кривую второго порядка.

    курсовая работа [1,9 M], добавлен 04.11.2013

  • Системы дифференциальных уравнений первого порядка. Положение равновесия системы. Численный расчет линеаризованной системы уравнений. Определение асимптотической устойчивости состояния равновесия системы в соответствии с первым методом Ляпунова.

    курсовая работа [3,0 M], добавлен 15.05.2012

  • Степенные ряды. Радиус сходимости. Ряды Лорана. Полюса и особые точки. Интегрирование дифференциальных уравнений при помощи степенных рядов. Общее дифференциальное уравнение Риккати. Исследование решений в окрестности полюса и существенно особой точки.

    дипломная работа [252,1 K], добавлен 15.12.2012

  • Математическое объяснение метода Эйлера, исправленный и модифицированный методы. Блок-схемы алгоритмов, описание, текст и результаты работы программы. Решение обыкновенных дифференциальных (нелинейных) уравнений первого порядка с начальными данными.

    курсовая работа [78,1 K], добавлен 12.06.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.