• Характеристики двумерной случайной величины. Анализ способов нахождения условных распределений в дискретном случае. Изучение понятия и сущности условного математического ожидания. Изучение основных свойств корреляционного отношения, условной плотности.

    презентация (267,5 K)
  • Поиск выборочных ковариации и коэффициента корреляции. Доверительный интервал для математического ожидания величины. Оценка параметров модели методом наименьших квадратов. Тестирование близости эмпирического распределения остатков моделей к нормальному.

    контрольная работа (948,7 K)
  • Принципы применения методов теории вероятностей и математической статистики для решения статистических задач. Построение гистограммы относительных частот. Эмпирическая функция распределения случайной величины. Оценка математического ожидания выборки.

    контрольная работа (4,0 M)
  • Создание гистограммы вероятностей распределения Пуассона, графика функции и плотности распределения с определенным параметром. Нахождение выборочного квадратического отклонения. Построение доверительного интервала, покрывающего математическое ожидание.

    творческая работа (335,6 K)
  • Определение количества некачественных и дефектных товаров в партии согласно теории вероятности, расчет математического ожидания и среднего квадратичного отклонения. Анализ дисперсии распределения выборки, понятие статистической игры и критериев Байеса.

    контрольная работа (85,4 K)
  • Вычисление коэффициента вариации, среднего квадратического отклонения, ряда распределения относительных частот, ширины доверительного интервала для генеральной средней с определенной надежностью. Проверка гипотезы о нормальном законе распределения.

    контрольная работа (177,4 K)
  • Рассмотрение расшифровки урновой схемы. Особенности определения геометрической вероятности. Исследование принципов применения формулы Бернулли в теории вероятности. Характеристика предельных значений вероятностей событий, интегральной теоремы Лапласа.

    контрольная работа (130,7 K)
  • Теория вероятностей и основные теоремы. Дискретная и непрерывная случайная величина. Статистическое распределение выборки, точечные и интервальные оценки. Доверительный интервал и критерий Пирсона. Элементы теории корреляции и формулы полной вероятности.

    контрольная работа (957,5 K)
  • Теория вероятностей как математический аппарат для изучения закономерностей случайных событий и связанных с ними случайных величин. Использование вероятностных и статистических методов в современной физике, технике, экономке, биологии и медицине.

    курсовая работа (501,0 K)
  • Использование теоремы Муавра Лапласа при решении задачи по теории вероятности. Нахождение закона распределения, математического ожидания и дисперсии. Построение графика функции распределения, полигона относительных частот и гистограммы накопленных частот.

    задача (528,5 K)
  • Изучение палитры компонент Standard, ее структура и взаимосвязь компонентов. Постижение принципов объектно-ориентированного программирования, их содержание и направления использования. Закономерности и этапы визуализации компонент, ее нормирование.

    лабораторная работа (92,7 K)
  • Общее число возможных элементарных исходов испытания, его равенство числу способов. Вероятность правильного оформления счета на предприятии. Формула полной вероятности. Поиск математического ожидания и дисперсии. Функция распределения вероятностей.

    контрольная работа (705,1 K)
  • Измерение интервалов между последовательно поступившими заявками для исследования потока заявок на производимую продукцию на предприятии. Построение корреляционного поля. Вычисление выборочного коэффициента корреляции и составление уравнения регрессии.

    контрольная работа (371,2 K)
  • Расчет работы кассиров по обслуживанию покупателей. Определение вероятности работы по специальности пяти отобранных случайным образом студентов. Отсутствие почтового индекса на случайно взятом конверте. Вероятность согласия потенциальных покупателей.

    контрольная работа (105,4 K)
  • Определение вероятности того, что отклонение случайной величины будет не более среднеквадратического. Построение графика плотности распределения и функции распределения. Нахождение математического ожидания, дисперсии и среднеквадратического отклонения.

    контрольная работа (217,3 K)
  • Способы распределения медалей между игроками. Случайное событие и его дополнение. Описание пространства элементарных событий. Формула нахождения вероятности появления хотя бы одного события. Нахождение функции распределения дискретной случайной величины.

    методичка (279,6 K)
  • Расчет вероятности отказа с помощью формулы Бернулли. Теоремы сложения и умножения вероятностей. Классическое и геометрическое определение вероятности. Изменения порядка интегрирования. Определение объема тела, заданного ограничивающими его поверхностями.

    контрольная работа (2,1 M)
  • Проведение вероятностных экспериментов. Вероятность выхода двух пассажиров на одной остановке. Пространство элементарных исходов. Равная вероятность обрыва телефонной линии после бури на определенном километре. Вероятность попадания бомбы в мост.

    контрольная работа (899,2 K)
  • Рассмотрение теоремы умножения вероятностей. Характеристика основных задач математической статистики. Выборка как набор объектов, случайно отобранных из генеральной совокупности, виды: повторная, бесповторная. Особенности непрерывных случайных величин.

    дипломная работа (551,9 K)
  • Независимость событий и случайность отбора. Использование формулы Пуассона и формулы Бернулли. Закон распределения и числовые характеристики. Соотношение доверительной вероятности и коэффициента доверия. Несмещенные оценки математического ожидания.

    контрольная работа (293,6 K)
  • Классическое определение вероятности, вычисление относительной частоты, её свойства. Дискретные и непрерывные случайные величины, биноминальное распределение, задачи и функции дисперсии. Формулы Байеса и Бернулли, интегральная теорема Муавра-Лапласа.

    курс лекций (513,8 K)
  • Шпаргалки по предмету "Теория вероятности". Включают в себя решение двадцати четырех задач: жетоны, урны, винтовки, колода карт, шарики, книги, цифры, бригады, детали, карточки, партии продукции.

    шпаргалка (14,5 K)
  • Вероятность: количества девушек среди отобранных студентов, нестандартной детали среди отобранных, поломки станка, попадания по мишени одного из стрелков, выбора работающих деталей, выбора черного шара, извлечения детали из определенной партии и аппарата.

    контрольная работа (177,3 K)
  • Исследование теории вероятности математиками Тарталья и Кардано, расчет вариантов выпадения очков. Ферма и Паскаль - основатели математической теории вероятности. Введение понятия математического ожидания Гюйгенсом. Области применения теории вероятности.

    реферат (17,2 K)
  • Предмет теории вероятности и ее задачи. Элементарные и сложные события. Частота событий и вероятность случайных событий. Классический способ задания вероятности. Теорема Муавра–Лапласа, схема Бернулли, теорема Пуассона. Распределение случайных величин.

    шпаргалка (91,6 K)
  • Понятие алгебры событий. Рассмотрение стохастического эксперимента определения вероятности. Свойства суммы и произведения событий. Методы расчета совместного появления двух величин. Основные формулы для исчисления функции Лапласа и теоремы Байеса.

    методичка (1,0 M)
  • Вероятность несовместимых и независимых событий. Пример использования формулы Бернулли. Плотность распределения вероятностей, математическое ожидание, среднее квадратичное отклонение и дисперсия. Интервальный и дискретный ряды распределения частот.

    задача (607,8 K)
  • Сущность теории вероятности, ее особенности применения при решении задач. Благоприятные исходы, их главные черты. Рассмотрение формулы полной вероятности. Функция распределения дискретной случайной величины. Понятие закона распределения их суммы.

    контрольная работа (610,4 K)
  • Анализ вероятности события. Расчет среднего квадратического отклонения, выборочной дисперсии статистического распределения выборки. Оценка дисперсии, корреляции согласно корреляционной таблице. Гипотеза о законе распределения по критерию согласия Пирсона.

    контрольная работа (54,9 K)
  • Определение и распределение дискретной случайной величины при множестве возможных значений. Свойства геометрической функции распределения. Формульное выражение математического ожидания. Графики функции и плотности распределения непрерывной величины.

    методичка (398,3 K)