Теория вероятности

Вероятность несовместимых и независимых событий. Пример использования формулы Бернулли. Плотность распределения вероятностей, математическое ожидание, среднее квадратичное отклонение и дисперсия. Интервальный и дискретный ряды распределения частот.

Рубрика Математика
Предмет Теория вероятности
Вид задача
Язык русский
Прислал(а) incognito
Дата добавления 20.11.2015
Размер файла 607,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Определение вероятности попадания в мишень по формуле Бернулли. Закон и многоугольник распределения случайной величины. Построение функции распределения, графика. Математическое ожидание, дисперсия, среднее квадратическое отклонение случайной величины.

    контрольная работа [86,4 K], добавлен 26.02.2012

  • Закон распределения случайной величины Х, функция распределения и формулы основных числовых характеристик: математическое ожидание, дисперсия и среднеквадратичное отклонение. Построение полигона частот и составление эмпирической функции распределения.

    контрольная работа [36,5 K], добавлен 14.11.2010

  • Определение числа всех равновероятных исходов испытания. Правило умножения вероятностей независимых событий, их полная система. Формула полной вероятности события. Построение ряда распределения случайной величины, ее математическое ожидание и дисперсия.

    контрольная работа [106,1 K], добавлен 23.06.2009

  • Классическое определение вероятности. Формулы сложения и умножения вероятностей. Дисперсия случайной величины. Число равновозможных событий . Матрица распределения вероятностей системы. Среднее квадратическое отклонение, доверительный интервал.

    контрольная работа [89,7 K], добавлен 07.09.2010

  • Операция объединения множеств. Перестановки без повторений, правило произведения. Вероятности извлечения предмета из урны. Вероятность наивероятнейшего числа попаданий в десятку. Математическое ожидание, дисперсия и среднее квадратичное отклонение.

    контрольная работа [165,5 K], добавлен 23.09.2011

  • Вероятность появления события в серии из независимых испытаний. Закон распределения дискретной случайной, интегральной, дифференциальной, имперической функции распределения, математическое ожидание, дисперсия, и среднее квадратическое отклонение.

    контрольная работа [397,9 K], добавлен 15.11.2010

  • Среднее арифметическое (математическое ожидание). Дисперсия и среднеквадратическое отклонение случайной величины. Третий центральный момент и коэффициент асимметрии. Законы распределения. Построение гистограммы. Критерий Пирсона. Доверительный интервал.

    курсовая работа [327,1 K], добавлен 29.03.2013

  • Использование формулы Бернулли для нахождения вероятности происхождения события. Построение графика дискретной случайной величины. Математическое ожидание и свойства интегральной функции распределения. Функция распределения непрерывной случайной величины.

    контрольная работа [87,2 K], добавлен 29.01.2014

  • Понятие непрерывной случайной величины, её значения на числовых промежутках. Определение закона распределения, его функции. Плотность распределения числовых характеристик вероятности. Математическое ожидание, дисперсия и среднеквадратичное отклонение.

    лекция [575,9 K], добавлен 17.08.2015

  • Определение вероятности того, что из урны взят белый шар. Нахождение математического ожидания, среднего квадратического отклонения и дисперсии случайной величины Х, построение гистограммы распределения. Определение параметров распределения Релея.

    контрольная работа [91,7 K], добавлен 15.11.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.