• Разностные методы решения краевых задач для уравнений в частных производных. Методы решения сеточных уравнений - специфическая система линейных алгебраических уравнений. Аппроксимация. Теорема о сходимости разностной схемы. Метод верхней релаксации.

    курсовая работа (1,6 M)
  • Знайомство з основними фізичними, хімічними і біологічними закономірностями процесу очищення стічних вод аерацією з активним мулом. Загальна характеристика теоретичних аспектів масопередачі кисню в аеротенках. Розгляд особливостей рівняння Щукарева.

    статья (41,5 K)
  • Обґрунтування актуальності створення математичної моделі гідроприводу поршневого насоса, що є елементом гідравлічної системи. Математична модель як сукупність математичних рівнянь опису двох фаз робочого циклу і відповідних початкових та граничних умов.

    статья (840,2 K)
  • Исследование теории графов в 30-е годы ХХ в. Двудольные графы и возможность их применения для наглядного представления паросочетаний. Изучение условия Холла. Трансверсали семейств множеств. Определение степени вершины. Паросочетания специального вида.

    лекция (127,2 K)
  • "Единая теория поля" — первая подлинно геометризованная концепция, толкующая электромагнитное поле как геометрический феномен. Четыре группы аксиом Вейля и доказательства их справедливости с построением математических моделей систем.

    реферат (98,1 K)
  • Понятие устойчивости, асимптотической устойчивости и неустойчивости по Ляпунову. Их геометрическая интерпретация. Устойчивость решения автономной системы и линейных дифференциальных уравнений с постоянными коэффициентами. Простейшие типы точек покоя.

    контрольная работа (20,2 K)
  • Управление математическими моделями. Связь входа и выхода. Строение моделей, линейность, нелинейность, дифференциальные уравнения. Передаточная функция, пространство состояний. Апериодическое, колебательное, интегрирующее звено. Анализ систем управления.

    книга (1,1 M)
  • Раздел дискретной математики, изучающий абстрактные автоматы: вычислительные машины, представленные в виде математических моделей и задачи, которые они могут решать. Работа распознавателя. Функциональная схема абстрактного автомата, порядок работы с ним.

    реферат (267,8 K)
  • История теории алгоритмов. Определение, свойства и типы алгоритмов. Действия с обыкновенными дробями. Алгоритмы в изучении различных школьных предметов. Разложение на простые множители. Арифметические действия с положительными и отрицательными числами.

    реферат (62,7 K)
  • Аналитическая и дифференциальная геометрия. Исследования Гаусса по неевклидовой геометрии. Обобщения теоремы Эйлера о многогранниках. Развитие концепции комплексного числа. Последовательности и ряды аналитических функций. Интегральная теорема Коши.

    книга (12,9 M)
  • Характеристика вектора, как семейства параллельных между собой одинаково направленных и имеющих одинаковую длину отрезков. Сложение и равенство векторов, свойства операций над ними, скалярное произведение двух векторов. Доказательства и решения задач.

    контрольная работа (116,0 K)
  • Подобие второго рода. Осевая симметрия. Следствия векторных формул. Алгебра преобразований и векторных формул, примеры решения основных задач с их использованием. Исследование векторных выражений. Вывод формул разложения на элементарные преобразования.

    статья (288,5 K)
  • Случайное событие, его частота и вероятность. Теоремы сложения и умножения вероятностей. Формула полной вероятности (формула Бейеса). Дискретные случайные величины. Математическое ожидание и его свойства. Дисперсия непрерывной случайной величины.

    методичка (375,2 K)
  • Вероятность независимых событий. Вероятность того, что два конкретных человека будут отдыхать в одном доме отдыха. Вероятность денежного выигрыша в лотерее. Вероятность попадания на сборку бракованной детали. Вероятность полного выздоровления пациента.

    контрольная работа (45,5 K)
  • Теоретические аспекты понятия "вероятностные пространства". Функции и типы распределения, их числовые характеристики и особенности преобразования случайных величин. Случайные процессы с непрерывным временем: общие определения и процесс Пуассона.

    курс лекций (891,4 K)
  • Классическое определение вероятностей. Искомая вероятность указанного события. Противоположные и несовместные события. Теорема умножения независимых событий. Повторные независимые испытания. Использование интегральной предельной теоремы Лапласа.

    контрольная работа (64,6 K)
  • Понятие о испытании и случайном событии, их совместимости, достоверности и взаимозависимости. Характеристика их суммы и произведений, справедливость сочетательного и дистрибутивного законов. Особенности определения вероятности и относительной частоты.

    реферат (19,8 K)
  • Теория вероятностей как математическая наука, позволяющая находить вероятности случайных событий, связанных каким-либо образом. Ее предмет и основные понятия, история возникновения. Теоремы: сложения вероятностей, предельная; теория случайных процессов.

    реферат (26,6 K)
  • Построение ряда распределения случайной величины, расчет ее математического ожидания и дисперсии. Определение частных, условных распределений и числовых характеристик системы случайных величин, вероятности попадания двумерной случайной величины в область.

    контрольная работа (126,0 K)
  • Применение формулы Байеса. Условная вероятность события. Закон распределения случайной величины. Условие полной вероятности событий. Математическое ожидание, дисперсия и среднеквадратическое отклонение распределения. Плотность распределения вероятностей.

    контрольная работа (58,5 K)
  • Формирование треугольника из трех произвольных отрезков. Расчет вероятности события исходя из оценки количества благоприятных случаев. Вычисление по формулам математического ожидания, дисперсии и среднеквадратического отклонения случайной величины.

    контрольная работа (60,4 K)
  • Три типа событий теории вероятностей, классическая вероятностная модель. Закон распределения случайной величины, понятие математического ожидания. Критерии для принятия решений в условиях неопределенности. Решение задач графоаналитическим методом.

    контрольная работа (217,5 K)
  • Изучение элементов комбинаторики. Случайные события и их вероятности. Классическая формула вероятностей. Последовательность независимых испытаний. Применение формулы Бернулли. Закон распределения случайных величин. Математическое ожидание и дисперсия.

    контрольная работа (51,0 K)
  • Понятие и примеры случайного события. Правила сложения и умножения в комбинаторике. Формулы вычисления вероятностей. Локальная и интегральная теоремы Муавра–Лапласа. Классы функций распределения. Непрерывные случайные величины. Закон больших чисел.

    краткое изложение (1,4 M)
  • Рассмотрение закона распределения случайной величины. Расчет математического ожидания, дисперсии и среднеквадратического отклонения числа. Вероятность попадания случайной величины в интервал. График плотности распределения математических функций.

    контрольная работа (108,2 K)
  • Определение вероятности случайного события, классической вероятности, статистической. Частота случайного события. Сумма и произведение двух событий. Функции распределения и плотности, начальные и центральные моменты. Мода, медиана, асимметрия и эксцесс.

    контрольная работа (264,0 K)
  • Нахождение вероятности выбора белых шаров из определенного количества черных. Вычисление вероятности выхода из строя элементов, заданных по условию, вероятность противоположного события. Построение графика вероятностей, использование формулы Бернулли.

    контрольная работа (572,9 K)
  • Понятие теории вероятностей, ее предмет. Возможность применения методов теории вероятностей к изучению статистических закономерностей. Математическое ожидание и дисперсия. Проявление предельных теорем при формальном изложении теории вероятностей.

    контрольная работа (31,8 K)
  • Определение вероятности события по классической формуле. Расчет вероятности гипотез по формуле Байеса. Составление закона распределения. Нахождение математического ожидания, дисперсии и среднеквадратического отклонения. Вычисление асимметрии и эксцесса.

    задача (151,3 K)
  • Исторические сведения о возникновении и развитии теории вероятностей. Определение случайного события и условные вероятности. Определение случайной величины и ее числовые характеристики, понятие математического ожидания. Примеры дискретных распределений.

    курс лекций (237,1 K)