• Понятие полного и частного приращения функции. Особенности определения частной производной функции нескольких переменных по одной из этих переменных. Сущность частных производных второго порядка. Математическое представление смешанных производных.

    презентация (112,4 K)
  • Сущность частного приращения по переменной в определенной точке, особенности наличия предела и его определение. Понятие дифференцируемости функции двух переменных, необходимое условие и достаточные. Характеристика основных теорем частных производных.

    лекция (30,4 K)
  • Характеристика частных производных по переменным в определенной точке. Сущность дифференциалов высших порядков, их классификация и задача. Основные экстремумы функции двух переменных. Главные правила нахождения наибольших и наименьших значений функции.

    лекция (51,2 K)
  • Производные второго порядка, функции нескольких переменных. Понятие дифференциала второго порядка. Разложение по формуле Тейлора. Необходимые условия существования экстремума. Критическая или стационарная точка, в которой может существовать экстремум.

    презентация (1,0 M)
  • Общая характеристика частных производных и частных дифференциалов функций со многими переменными. Геометрический смысл частных производных и полного дифференциала. Основные правила вычисления дифференциалов и понятие частных производных высших порядков.

    курсовая работа (725,8 K)
  • Определение типа матриц, для которого обратная матрица тот же тип. Анализ условий, обеспечивающих невырожденность матрицы. Исследование матриц третьего порядка. Определение характеристик полей, над которыми существуют обратные матрицы исследуемых типов.

    статья (209,8 K)
  • Анализ поведения системы в случае динамических возмущений. Применение новых методов исследования для различных классов объектов. Построение математической модели нелинейных процессов. Создание методологии оценки робастности в нестационарных системах.

    автореферат (195,3 K)
  • Характеристика оценки меры иррациональности значений дзета-функции Римана в целых точках. Проведение исследования обобщенного интеграла В.Н. Сорокина с произвольным набором параметров. Особенность применения преобразований к сохранённым массивам.

    статья (37,9 K)
  • Анализ пространства как трехмерного континуума. Возможность четырехмерной трактовки "мира". Оценка пространства Минковского как четырёхмерного псевдоевклидового пространства сигнатуры, предложенного в геометрической интерпретации пространства-времени.

    реферат (109,7 K)
  • Розгляд поверхневих потоків стоку мілкої води. Застосування рівняння Бусинеску. Опис грантових потоків з урахуванням гідравлічного потоку, природних факторів. Формулювання крайової задачі руху рідини по поверхні водозбору. Моделювання за допомогою COMSOL.

    статья (487,0 K)
  • Дослідження чисельних схем для задач п’єзоелектрики. Умови коректності статичних і усталених коливань п'єзоелектрика. Розробка об’єктно-орієнтованої моделі даних і алгоритмів та відповідного їй програмного забезпечення, проведення числових експериментів.

    автореферат (363,3 K)
  • Математичне моделювання процесу масоперенесення сольових розчинів при вологоперенесенні в шарах області неповного насичення з врахуванням осмотичних явищ в нелінійному випадку. Чисельні розв’язки відповідних крайових задач методом скінчених різниць.

    статья (747,8 K)
  • Задачі геометрично нелінійного деформування оболонок з урахуванням обтиску нормалі на базі шестимодального варіанту теорії оболонок Тимошенка-Міндліна та формулювання відповідних задач. Умови стійкості та оцінок швидкості збіжності побудованих схем.

    автореферат (804,3 K)
  • Моделі гідродинаміки рівнянь Нав'є-Стокса. Уточнені початково-крайові задачі стоку мілкої води у гідродинамічному й кінематичному наближеннях. Проекційно-сіткові та рекурентні схеми для дискретизації задач. Їх стійкість, збіжність, програмна реалізація.

    автореферат (62,4 K)
  • Розробка ефективних чисельних методів для наближеного розв'язування лінійних задач коливання рідини в осесиметричних контейнерах. Дослідження методики на тестових прикладах для підтвердження застосовності алгоритмів і отриманих теоретичних оцінок похибок.

    автореферат (52,5 K)
  • Розробка чисельного алгоритму для розв’язування квазістатичних задач пружно-пластичного деформування просторових тонкостінних конструкцій складної форми. Комплекс програм для проведення дослідження напружено-деформованого стану інженерних конструкцій.

    автореферат (84,9 K)
  • Прямі лінійні, обернені нелінійні задачі. Початково-крайові для рівнянь параболічного та гіперболічного типів, включаючи векторний випадок (рівняння Нав'є-Стокса). Задачі реконструкції включення в обмеженому тілі за відомими даними Коші на границі тіла.

    автореферат (66,6 K)
  • Розвиток обчислювальної техніки. Вивчення проблеми формування, фокусування і транспортування пучків заряджених частинок з великим просторовим зарядом. Проектування фізичних приладів. Будова чисельного алгоритму на основі методу інтегральних рівнянь.

    автореферат (90,9 K)
  • Побудова високоточних стабілізованих та h-адаптивних схем методом скінченних елементів. Рішення сингулярно збурених крайових задач міграції домішок в нестисливих середовищах. Схеми рівномірного розподілення похибки між скінченними елементами триангуляції.

    автореферат (107,3 K)
  • Прямі і ітераційні методи розв’язування систем лінійних алгебраїчних рівнянь. Методи визначення коренів нелінійних рівнянь. Знаходження власних чисел і власних векторів матриць. Кубічна сплайн-інтерполяція, чисельне розв’язування задачі Коші для рівняння.

    учебное пособие (3,0 M)
  • Поняття та характеристика унімодальної функції, порядок визначення її точок максимуму і мінімуму та умови екстремумів. Суть локальних та глобальних методів, особливості методів Больцано (поділу інтервалу навпіл), золотого перетину, рівномірної розбивки.

    контрольная работа (1,3 M)
  • Побудування теорії узагальненої розв’язності крайової задачі. Умови керованості та існування оптимального керування для конкретних задач узагальненого керування (імпульсного, точкового, рухомого та ін.). Градієнт функціоналу якості, його гладкість.

    автореферат (61,3 K)
  • Обґрунтування варіаційного підходу до опису власних значень та до розв'язування лінійних та нелінійних багатопараметричних спектральних задач. Розробка необхідного програмного забезпечення та числові експерименти з розв'язування відомих модельних задач.

    автореферат (643,3 K)
  • Основи чисельних методів розв’язання задач алгебри, аналізу і звичайних диференціальних рівнянь. Теорія і алгоритми оптимізації диференціальних безперервних функцій за наявності обмежень і без них. Використання методу скінченних елементів у механіці.

    учебное пособие (2,0 M)
  • Розв’язок рівнянь в програмному середовищі Maple. Аналіз особливостей розв’язання диференційних рівнянь і побудови графіків. Характеристика метода Гауса. Розв’язання рівняння за допомогою Метода Ейлера та Рунге-Кута. Отримання дійсних коренів рівняння.

    контрольная работа (1,6 M)
  • Вивчення особливостей чисельно-аналітичного способу дослідження крайових задач для зліченних систем нелінійних диференціальних рівнянь першого порядку. Оцінка ітераційних схем побудови розв’язків у вигляді рівномірно збіжної послідовності функцій.

    автореферат (61,4 K)
  • Дослідження процесів теплопереносу, переносу заряду, розподілу концентрації компонентів біохімічної реакції. Моделювання фізико-хімічних процесів в біосенсорних системах на основi напiвпровiдникових структур, створення математичного інструментарію.

    автореферат (59,1 K)
  • Проведение урока на закрепление знаний нумерации чисел от 1 до 10. Повторение прямого и обратного устного счёта. Работа с веером цифр и повторение состава чисел 6 и 7. Проведение физкультминутки. Решение задач по изучаемой теме и отгадывание загадок.

    конспект урока (14,0 K)
  • Послідовність многочленів Апеля. Многочлени та числа Бернуллі. Основна властивість многочленів Бернуллі. Зв’язок з простими числами. Експоненційна генератриса послідовності. Правило винесення за знак біноміального коефіцієнта. Формальний степеневий ряд.

    курсовая работа (105,3 K)
  • Любопытные свойства натуральных чисел, которые обнаруживаются при выполнении над ними арифметических действий. Сущность задачи о ростовщике представителя знаменитой швейцарской династии математиков Якоба Бернулли. Приметы и суеверия о числах 7 и 13.

    доклад (106,3 K)