- 5791. Финансовая математика
Адаптивная мультипликативная модель Хольта-Уинтерса с учетом сезонного фактора. Проверка случайности уровней. Нахождение экспоненциальной скользящей средней. Вычисление скорости изменения цен и индекса относительной силы. Расчет стохастических линий.
- 5792. Финансовая математика
Знакомство с особенностями определения суммы, возвращенной банком, при ежеквартальном начислении процентов. Рассмотрение способов определения дисконт банка и суммы, полученной векселедержателем, при полугодовом начислении процентов, анализ примеров.
Описание моделируемого объекта на одном из языков кодирования информации. Географические и биологические модели. Схема, демонстрирующая, что для одного объекта один субъект может построить несколько моделей. Построение правильного шестиугольника.
Теория и основные методы формализации знаний прикладного характера, формальное решение качественных задач в математике. Изучение сущности концепции логического программирования. Математические задачи на нахождение решений известными формальными методами.
Методы формализации знаний прикладного характера, возможность формального решения качественных задач. Систематизация прикладных задач качественного характера. Классификация типов задач, проблемы решения задач в теоретико-множественных представлениях.
Описание модели выбора решений из множества альтернатив, в результате которого получается их подмножество или несколько, основанных на использовании байесовского подхода, на базе понятия функции защищенности, как оценки последствий принятия решения.
Возможность формализованного описания транспортных эргатических систем с огранизмическим принципом формирования их структуры (объект предопределяет поведение оператора). Вычисление матрицы спектральных плотностей. Функция множественной когерентности.
Свойства логического мышления. Сущность законов тождества, непротиворечия, исключенного третьего и достаточного основания. Роль языка в хранении и передаче информации в процессе познания. Образование союзов и кванторов. Понятие конъюнкции и инверсии.
- 5799. Формальная модель выбора
Характеристические свойства функций выбора и требования к ним. Установление факта отказа от покупки. Условие независимости от отбрасывания отвергнутых вариантов. Правило строгого наследования или константности. Принцип парных предъявлений Кондорсе.
Принципы построения формальных теорий. Проблемы, связанные с системой аксиом. Доказательство независимости системы аксиом. Исчисление высказываний, символы и формулы. Теорема дедукции и правило силлогизма (транзитивный вывод). Примеры решения задач.
- 5801. Формальные системы
Совокупность абстрактных объектов, в которой представлены правила оперирования множеством символов в синтаксической трактовке. Правила, применяемые к формулам. Классическая классификация формальных грамматик. Моделирование сложных ветвящихся процессов.
- 5802. Формации конечных групп
Простейшие свойства формаций, их основные обозначения и теоремы. Проекторы конечных групп. Формации Гашюца. Характеристика основных позиций теории формации и приведение конкретных примеров. Строение формаций порожденных группами и сущность корадиалов.
Понятие формации алгебраических систем. Факты о формационных свойствах универсальных алгебр (фактор-алгебр, подалгебр, конгруэнций, рядов конгруэнций), а также новые оригинальные доказательства свойств, ранее известных в общей форме для других теорий.
Определение термина "алгоритмический стиль мышления", особенности его формирования в процессе обучения в ходе решения задач. Роль нестандартных задач при обучении математике. Поиск связи между фактами, построение цепочки рассуждений для достижения цели.
Геометрия - наука о формах, размерах и границах тех частей пространства, которые в нем занимают вещественные тела. Определение роли, которую сыграла неевклидова геометрия в математике и теории геометризованной гравитации Гросмана-Гильберта-Эйнштейна.
Изучение разного введения понятия "Производной", наглядно-интуитивное введение на пропедевтическом уровне, структура действующей программы. Особенности усвоения понятия, нахождению производных функций и применению данного понятия для решения многих задач.
Микроядерный тест, его использование при цитологических и гистологических исследованиях, для диагностики ряда заболеваний. Использование светового излучения при проведении лечебных процедур и его роль в процессах злокачественной трансформации клеток.
- 5808. Формирование общеучебных умений и навыков при решении задач на построение в курсе геометрии 7 класса
Теоретические основы формирования общеучебных умений и навыков. Формирование общеучебных умений и навыков при обучении математики. Конспекты уроков геометрии в 7 классе на тему "Задачи на построение", способствующие формированию общеучебных навыков.
Изучена методика выполнения оценивания компетентности группы экспертов на стадии выявления знаний. Суть методики сводится к тому, что ряду специалистов предлагается высказать мнение о составе экспертной группы. По результатам опроса составляется матрица.
Развитие и обоснование планиметрии прямолинейных фигур и пропорций в античной математике. Доказательство теоремы Пифагора. Открытие несоизмеримых величин, начало кризиса пифагорейской философии и методологических основ развиваемой ими системы математики.
История понятия случайной величины. Закон больших чисел, расширение проблематики, связанной с ним в работах ученых. Введение математического ожидания и дисперсии в теорию вероятностей. Заложение основ теории случайных процессов на базе физических задач.
Исторический аспект происхождения дробей в разных странах: Древнем Египте, Греции, Индии, Китае, Риме. Понятия, свойства рациональных и нерациональных чисел. Формирование понятия доли и дроби в вариантных программах обучения математике.
Изучение школьного курса геометрии на примере раздела "Перпендикулярность прямых и плоскостей". Дидактические возможности использования информационных технологий в процессе обучения геометрии в общеобразовательной школе. Проект "Куб принца Руперта".
Понятие научного мышления, его качества. Анализ математического мышления школьников, умение выполнять мыслительные операции: сравнения, анализа, синтеза, абстракции, обобщения и конкретизации. Формирование системного стиля мышления, интуиция, одаренность.
Особенность использования таблицы Пифагора для обучения школьников умножению. Характеристика основных способов вычисления произведений однозначных чисел. Главный анализ создания программы формирования табличного приумножения с произвольными диапазонами.
Историко-математический анализ вклада ученых в создание теории магических конструкций (квадраты, окружности, многоугольники, кресты, звезды). Методы построения фигурных построек до начала XVIII столетия. Числовые суеверия в Индии, Китае, странах ислама.
Развитие логического мышления на уроках математики. Умение формулировать вопросы и умение соотносить понятия. Прием "тонкие" и "толстые" вопросы. Ознакомление с информацией по теме данного урока. Установление взаимосвязи между теорией и практикой.
Розвиток конструктивної теорії формозберігаючого наближення. Побудова дослідження математичних моделей взаємодії суцільних середовищ при наявності поверхонь розриву. Довільні фіксовані вузли до локального наближення. Стохастичні аналізи і статистика.
Систематизація схем формоутворення триортогональних систем поверхонь і складання функцій введення ортогональних координацій простору. Інтерпретація побудованих триортогональних систем поверхонь у вигляді функцій введення ортогональних координацій.
Послідовності незалежних випробовувань. Числові характеристики, математичне сподівання та дисперсія випадкових величин. Функції випадкового аргументу, закон її розподілу. Закон великих чисел. Теореми Чебишева та Бернулі. Поняття про теорему Ляпунова.