Способы образования кривых

Теория конических сечений. Задача о квадратуре сегмента параболы. Исследование геометрических свойств кривых. Декартов лист, кривые третьего порядка. Уравнение строфоиды в полярной системе координат. Овалы Кассини, улитка Паскаля, лемниската Бернулли.

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 15.10.2012
Размер файла 856,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Содержание

ВВЕДЕНИЕ

1. СПОСОБЫ ОБРАЗОВАНИЯ КРИВЫХ

2. КРИВЫЕ ТРЕТЬЕГО ПОРЯДКА

3. КРИВЫЕ ЧЕТВЕРТОГО ПОРЯДКА

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

ВВЕДЕНИЕ

Греческие учёные создали теорию конических сечений - линий, имеющих особенно большое значение в науке и технике. Открытие их приписывается Менехму (4 век до н.э.), ученику Евдокса Книдского и, как полагают, учителю Александра Македонского. Менехм определял эти кривые как сечения конуса плоскостью, перпендикулярной к его образующей.

Что послужило поводом к этому открытию? Может быть, поиски решения знаменитой делосской задачи об удвоении куба, может быть практический вопрос о том, насколько должен быть вытянут овал, находящийся в качестве архитектурного сооружения на фронтоне здания, чтобы с известного места перед зданием он казался кругом.

Есть данные полагать, что Менехм знал свойства параболы и гиперболы, выражаемые в наши дни равенствами =2px и xy=c, и использовал эти свойства для делосской задачи удвоения куба. К сожалению это первое сочинение по теории конических сечений было утеряно. Также не дошла до нас работа греческого геометра Аристея, написавшего пять книг о пространственных местах», из которых много заимствовал Евклид для своей также утраченной) работы о конических сечениях.

Архимед решил задачу о квадратуре сегмента параболы. Сравнивая фигуры, вписанные в эллипс и в окружность, построенную на большой оси эллипса как на диаметре, он определил и площадь эллипса.

Однако все сведения о конических сечениях были ещё разрозненны. Первая методическая обработка конических сечений принадлежит Аполлонию Пергскому (3 - 2 в. до н.э.). Это был трактат «О конических сечениях». В своём трактате Аполлоний систематизировал всё, что было известно до него, и открыл ряд важных свойств, установил их названия.

Но не только конические сечения открыты греками. Ряд математиков в поисках решения великих проблем древности - задачи о трисекции угла, об удвоении куба и о квадратуре круга - использовал для образования кривых идею движения. Так возникли спираль Архимеда, циклоида, квадратрисса Динострата. В то же время первоначальный метод - образование кривых путём рассечения поверхности плоскостью был использован для образования кривых Персея как сечений тора.

В эпоху средневековья великие достижения греческих учёных были забыты.

К кривым математическая наука обратилась только в 17 веке, в связи с созданием аналитической геометрии.

1637 год - одна из великих дат в истории математики - год появления книги Р. Декарта «Геометрия», в которой были изложены основы метода координат. Открытие этого метода для исследования кривых было фактом первостепенного значения. Метод координат не только создал общий, единообразный способ символического задания каждой кривой в виде соответствующего ей уравнения, он давал также неограниченную возможность беспредельно увеличивать количество изучаемых кривых, поскольку каждое произвольно записанное уравнение, связывающее между собой две переменные величины, представляло теперь, вообще говоря, новую кривую.

Открытие метода координат подготовило в свою очередь открытие могущественного метода науки - исчисления бесконечно малых. Рождение дифференциального и интегрального исчисления имело особо важное значение для изучения свойств кривых. В связи с многочисленными проблемами механики, астрономии, геодезии, оптики, возникшие в 17 - 18 в., стимулировали интерес к исследованию инфинитезимальных свойств линий. Эти проблемы привели к открытию новых линий. Роберваль и Паскаль показывают, что дуга спирали Архимеда равна дуге параболы, выбранной определённым образом и что, следовательно, задача спрямления спирали идентична задаче спрямления параболы. Ферма обобщает это предложение на алгебраические спирали высших порядков, устанавливая, что их спрямление сводится к спрямлению парабол высших порядков. Нейль открывает алгебраическую кривую, которая спрямляется алгебраически (парабола Нейля). К этому же времени относится спрямление логарифмической спирали, выполненное Торичелли, спрямление эпи- и гипоциклоид, выполненное Де ла Гиром. Фаньяно в 1714 году, исследуя вопрос о спрямлении лемнискаты, заложил основы теории эллиптических функций.

Наряду с исследованием геометрических свойств кривых исследуются и их механические свойства. Гюйгенс открывает изохронность циклоиды. И. Бернулли показывает, что циклоида является брахистохроной в пустом пространстве. Исследуются механические свойства параболы Нейля, цепной линии, овалов Кассини, овалов Декарта и целого ряда других теперь хорошо известных кривых.

Не только практические потребности века - запросы промышленности, конструирование машин и механизмов, постройка плотин и шлюзов - постоянный и глубокий интерес к исследованию кривых у этих учёных, но и та «радость созерцания формы», которая, по словам Клейна, характеризует истинного геометра.

Увлечение аналитическим методом исследования кривых, особенно характерное для 17 века, с течением времени вызвало реакцию со стороны некоторых учёных. Как недостаток этого метода отмечалось то обстоятельство, что употребление его не раскрывает естественного происхождения кривой, так как объектом исследования фактически является не сама кривая, а соответствующее ей уравнение. Плодотворные попытки возвратиться к синтетическому методу древних породили новое направление в исследовании свойств кривых второго порядка. Первые достижения здесь связываются с именами Дезарга и Паскаля. Дезарг, исследуя проективные свойства фигур и используя установленное им понятие инволюции, обогатил теорию кривых второго порядка новыми открытиями. Пскаль открывает свою знаменитую теорему о соотношении между шестью точками конического сечения, согласно которой во всяком шестиугольнике, вписанном в кривую второго порядка, точки пересечения противоположных сторон лежат на одной прямой. Де ла Гир приходит к важному предложению о том, что директриса кривой второго порядка является полярой её фокуса.

Новые методы исследования свойств кривых второго порядка развиваются в 19 столетии. Брианшон доказывает теорему, двойственную теореме Паскаля, и изучает проективные свойства гиперболы. Понселе исследует кривые второго порядка с помощью открытого им метода проективных соответствий. Штейнер и Шаль исследуют проективные свойства этих кривых на основе понятия двойного отношения и рассматривают их как производные от образов первой ступени.

Критика аналитического метода исследования формы и свойств кривых была основана, как было уже сказано, на том обстоятельстве, что при пользовании этим методом отсутствует наглядный образ этой кривой и исчезают геометрические построения. Она дополнялась и другими соображениями. Указывалось, что система координат является посторонним элементом исследования, с которым кривая связывается искусственно.

Крупнейшим достижением этого направления в исследовании кривых было создание общей теории алгебраических кривых. Особые достижения в развитии этой теории связываются с именем Плюккера. Однако в алгебраической геометрии полностью отрешиться от системы координат как постороннего элемента всё-таки не удалось.

В заключение о плодотворной идее использования векторного аппарата при исследовании свойств линий, которая связывается с именем Грассмана, и о топологическом методе исследования кривых, имеющих наиболее сложные формы.

СПОСОБЫ ОБРАЗОВАНИЯ КРИВЫХ

Алгебраической кривой n-го порядка называется кривая, уравнение которой, после освобождения его от дробей и радикалов, записывается в декартовой системе координат в виде

Исследование особенностей формы кривой и её свойств средствами дифференциальной геометрии возможно, когда кривая выражена в аналитической форме, т.е. уравнением. Однако, прежде чем исследовать уравнение кривой, необходимо его составить на основании некоторых данных. Для этого надо рассмотреть способы образования кривых.

Кривая определяется как линия пересечения данной поверхности и плоскостью

В истории развития учения о кривых этот способ является первым. Греки определяли кривые второго порядка как сечения кругового конуса. Таково же происхождение кривых Персея, получаемых в результате сечений плоскостью поверхности тора. Эвольвента круга может быть определена как линия пересечения поверхности касательных к винтовой линии, перпендикулярной к её оси и т.д.

Кривая определяется как геометрическое место точек.

Этот способ особенно употребителен. Он широко практиковался ещё греческими математиками; так Евклид рассматривал конические сечения как геометрические места точек, сохраняющих постоянное отношение расстояний от данной точки и от данной прямой. Как геометрическое место точек была определена Диоклесом его циссоида. Таким же способом определяет Никомед конхоиду. Такие линии, как овалы Декарта, овалы Кассини, улитка Паскаля, строфоида, верзиера и целый ряд других кривых, определяются обычно как геометрические места.

Кривая определяется как траектория точки.

Кинематический способ образования линий был также хорошо известен греческим учёным. Как траекторию точки, участвующей одновременно в двух равномерных движениях, одно из которых совершается по прямой, а другое - по окружности, определил Архимед свою спираль. Все циклоидальные кривые являются траекториями точки, жёстко связанной с кругом, который катится без скольжения по окружности другого круга. Кинематическим путём определяется квадратриса Динострата как траектория точки пересечения вращающегося радиуса окружности с хордой, двигающейся параллельно самой себе. Лемниската Бернулли может быть определена как траектория середины большого звена шарнирного антипараллелограмма, противоположное звено которого закреплено. Кинематически определяются розы, кривые скольжения и многие другие линии. Кинематический способ задания кривой полагался Декартом в основу определения кривых методом координат.

Кривая определяется заданием её дифференциальных свойств.

Непосредственно задаваемое по условию задачи или вытекающее из этого условия соотношение между бесконечно малыми элементами кривой выражается сначала в виде некоторого дифференциального уравнения. Последующее интегрирование этого уравнения приводит к обычному уравнению искомой кривой. Такой способ определения уравнения кривой характерен для многочисленных задач геометрии, механики, физики, техники. Так показательная кривая может быть определена как линия, у которой подкасательная для всех точек имеет одно и то же значение. Трактриса характеризуется постоянством длины касательной. Радиоидальная спираль определяется как линия, для которой радиус кривизны обратно пропорционален длине дуги. На основании геометрических соображений и законов механики выводятся дифференциальные уравнения цепной линии, изогнутой оси балки и т.д.

Кривая определяется как линия, получаемая в результате того или иного геометрического преобразования уже известной кривой.

Этот способ образования кривых является наиболее эффективным. Он не только даёт неиссякаемые средства для определения новых кривых, но и позволяет определять свойства но вой кривой как отражение свойств преобразуемой кривой.

К числу основных геометрических преобразований относятся аффинное, проективное, инверсия, квадратичное, двойственное, касательное.

2. КРИВЫЕ ТРЕТЬЕГО ПОРЯДКА

В общем случае уравнение кривой линии третьего порядка можно записать так: х3+а1у3+а2х2у+а3ху2+а4х2+а5у2+а6ху+а7х+а8у+а9=0.

Декартов лист

Декартовым листом называется кривая 3-го порядка. Уравнение в прямоугольных координатах: x3 + y3 -- 3аху = 0. Координаты х и у входят в уравнение декартова листа симметрично, откуда следует, что кривая симметрична относительно биссектрисы у=х.

Историческая справка. Впервые в истории математики кривая, названная впоследствии декартовым листом, определяется в письме Декарта к Ферма в 1638 г. как кривая, для которой сумма объемов кубов, построенных на абсциссе и ординате каждой точки, равняется объему параллелепипеда, построенного на абсциссе, ординате и некоторой константе. Форма кривой устанавливается впервые Робервалем, который находит узловую точку кривой, однако в его представлении кривая состоит лишь из петли. Повторяя эту петлю в четырех квадрантах, он получает фигуру, напоминающую ему цветок с четырьмя лепестками. Поэтическое название кривой «лепесток жасмина», однако, не привилось. Полная форма кривой с наличием асимптоты, проходящей через точки ( --а, 0) и (0, --а), была определена позднее (1692) Гюйгенсом и И. Бернулли. Название «декартов лист» прочно установилось только с начала 18 века.

Локон Аньези

Пусть имеется круг с диаметром OC = -а и отрезок BDM, построенный так, что ОВ : BD = OC : ВМ; геометрическое место точек М представляет собой локон Аньези (или верзиеру). уравнение в прямоугольных координатах: у = a3/(a2 + x2). Исследование этой К. связано с именем итальянской женщины-математика Марии Аньези (1748).

Аньйзи Мария Гаэтана (Agnesi Maria Gaetana), род. 16.05.1718, Милан - ум. 09.01.1799, там же. Итальянский математик, профессор университета в Болонье (с 1750). Сочинение Аньези "Основания анализа для употребления итальянского юношества" ("Instituzioni analitiche ad uso della gioventъ italiana", v.1-2, Mil., 1748) содержит изложение аналитической геометрии, в частности там рассмотрена кривая третьего порядка, названная "локоном Аньези" (или верзиера), уравнение которой y=a3 / (x2 +a2) .

Для того чтобы построить эту линию, надо нарисовать окружность радиусом a с центром в точке (0,a). Затем из начала координат проводят прямые и отмечают две точки. Точка А (;) - точка пересечения прямой и окружности, точка B (2а) точка пересечения прямой и верхней горизонтальной касательной к окружности. Затем строится точка кривой (;).

Английский математик Джон Колсон взял на себя труд переводить "Начала анализа" с итальянского. Однако для него, европейца XVIII века, было нелегко воспринять, что автор книги - женщина, и что для нее, для автора, кривая может ассоциироваться с прической. В результате в англоязычной литературе кривая получила название - witch of Agnesi. - что-то из области полетов на лысую гору...

Строфоида (от греч. strуphos -- кручёная лента и йidos -- вид)

Пусть имеется неподвижная прямая АВ и точка С вне её на расстоянии CO = а; вокруг С вращается прямая, пересекающая АВ в переменной точке N. Если от точки N отложить по обе стороны прямой АВ отрезки NM = NM' = NO, то геометрическое место точек М и М' для всех положений вращающегося луча CN и есть строфоида. Уравнение в прямоугольных координатах:

;

в полярных координатах:

r = --a cos 2j/cosj.

Уравнение строфоиды в полярной системе координат:

.

Параметрическое уравнение строфоиды:

, где

Площадь петли строфоиды слева от оси ординат

.

Площадь между строфоидой и асимптотой справа от оси ординат

.

Считается, что строфоида впервые была рассмотрена французским математиком Жилем Робервалем в 1645 году. Роберваль называл эту кривую -- «птероида» (от греч. рфеспн-- крыло). Название «строфоида» было введено в 1849 году.

3. КРИВЫЕ ЧЕТВЕРТОГО ПОРЯДКА

парабола кривая геометрический координата

Кардиоида (от греч. kardнa -- сердце и йidos -- вид)

Кардиоида впервые встречается в трудах французского учёного Луи Карре (Louis Carrи, 1705 г.). Название кривой дал Джованни Сальвемини ди Кастиллоне (Giovanni Salvemini di Castiglione, упоминается также как Johann Francesco Melchiore Salvemini Castillon) в 1741 г.

«Спрямление», то есть вычисление длины кривой, выполнил Ла Ир (Philippe de La Hire), который открыл кривую независимо, в 1708 г. Также независимо описал кардиоиду голландский математик Й. Коерсма (J. Koersma, 1741 г.). В дальнейшем к кривой проявляли интерес многие видные математики XVIII-XIX веков.

Кардиоиду можно определить как траекторию точки, лежащей на окружности круга радиуса r, который катится по окружности неподвижного круга с таким же радиусом.

Уравнение в прямоугольных координатах: (x2 + y2 -- 2ах)2 = 4a(x2 + y2); в полярных координатах: r = 2а (1 + cos j).

Лемниската Бернулли (от лат. lemniscatus, буквально -- украшенный лентами)

Кривая, имеющая форму восьмёрки; геометрическое место точек, произведение расстояний которых от фокусов F1 ( -- а, 0) и F2 (а, 0) равно а2. уравнение в прямоугольных координатах:(x2 + y2)2 -- 2a2 (x2 -- y2) =0, в полярных координатах: r2 = 2а2 cos 2j. Впервые рассматривалась Я. Бернулли (1694). Лемниската является частным случаем овалов Кассини и синус-спиралей.

Овалы Кассини

Геометрические места точек М, произведение расстояний которых от двух данных точек постоянно. Пусть F1 и F2 точки на оси абсцисс, F1F2 = 2b, а произведение MF1ЧMF2 = а2. уравнение в прямоугольных координатах:

(x2 + y2)2 -- 2b2 (x2 -- y2) = a4 -- b4.

Если , то овал Кассини -- выпуклая кривая; если b < a < , то кривая имеет вид овала с двумя утолщениями; при а = b овал Кассини рассмотрены Дж. Кассини (17в.), который считал, что орбита Земли - овал (а не эллипс).

Улитка Паскаля

Геометрическое место точек М и M', расположенных на прямых пучка (центр которого О лежит на окружности радиуса R) на расстоянии а по обе стороны от точки Р пересечения прямых с окружностью; т. о., PM = PM' = а. уравнение в прямоугольных координатах: (x2 + y2 -- 2Rx)2 -- а2(х2 + y2) = 0, в полярных координатах: r = 2R cos j + а. При а = 2R петля стягивается в точку, в этом случае улитка Паскаля превращается в кардиоиду. Историческая справка. Впервые кривая рассмотрена Б. Паскалем в 17 в. и названа его именем.

Розы

Кривые, полярное уравнение которых:r = a sin mj; если m -- рациональное число, то розы -- алгебраическая кривая чётного порядка. При m нечётном роза состоит из m лепестков, при m чётном -- из 2m лепестков; при m рациональном лепестки частично покрывают друг друга.

Синусоидальные спирали

Кривые, полярное уравнение которых rm = am cosmj; если m -- рациональное число, то эти кривые -- алгебраические. Частные случаи: m = 1 -- окружность, m = -- 1 -- прямая, m = 2 -- лемниската Бернулли, m = --2 -- равнобочная гипербола, m = 1/2 -- кардиоида, m = -- 1/2 -- парабола. При целом m > 0 кривая состоит из m лепестков, каждый из которых лежит внутри угла, равного p/m, при рациональном m > 0 лепестки могут частично покрывать друг друга; если m < 0, то кривая состоит из от бесконечных ветвей.

Отличительная особенность этих более сложных кривых линий состоит в том, что они могут иметь точку перегиба. Если вы знакомы с графиком функции у=х3 то, конечно, видели тот перегиб, который происходит в начале координат. Кривые линии третьего порядка хорошо соответствуют тем линиям, которые мы наблюдаем в живой природе, например, линиям изгиба человеческого тела, поэтому в качестве основных объектов векторной графики используют именно такие линии (кривые третьего порядка).

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1) Кривые // Энциклопедический словарь Брокгауза и Ефрона: В 86 томах (82 т. и 4 доп.). -- СПб.: 1890--1907.

2) Выгодский М.Я. Справочник по высшей математике. М.:АСТ:Астрель, 2006.

3) Савелов А. А. Плоские кривые. М., 1960.

4) Маркушевич А. И. Замечательные кривые. -- Гостехиздат, 1952. -- 32 с. -- (Популярные лекции по математике, выпуск 4).

5) Коротецкая В.А. Полярная система координат. Магнитогорск, МГМА, 1996.

Размещено на Allbest.ru


Подобные документы

  • Понятие и свойства плоских кривых, история их исследований, способы их образования, разновидности и свойства нормали. Методы построения некоторых видов кривых, называемых "Декартов лист", лемнискаты Бернулли, улитки Паскаля, строфоиды, циссоиды Диокла.

    курсовая работа [3,1 M], добавлен 29.03.2011

  • Математическое понятие кривой. Общее уравнение кривой второго порядка. Уравнения окружности, эллипса, гиперболы и параболы. Оси симметрии гиперболы. Исследование формы параболы. Кривые третьего и четвертого порядка. Анъези локон, декартов лист.

    дипломная работа [877,9 K], добавлен 14.10.2011

  • Сведения о плоских кривых. Замечательные кривые третьего порядка. Классификация Ньютона кривых третьего порядка. Циссоида и ее свойства. Преобразования плоскости, переводящие кривые второго порядка в кривые третьего порядка. Преобразования Маклорена.

    дипломная работа [960,1 K], добавлен 22.04.2011

  • Использование кривых второго порядка в компьютерных системах. Кривые второго порядка в 3d grapher. Жезл, гиперболическая спираль. Спираль Архимеда, логарифмическая спираль. Улитка Паскаля, четырех и трехлепестковая роза. Эпициклоида и гипоциклоида.

    реферат [221,1 K], добавлен 26.12.2014

  • Кривая и формы поверхности второго порядка. Анализ свойств кривых и поверхностей второго порядка. Исследование форм поверхности методом сечений плоскостями, построение линии, полученной в сечениях. Построение поверхности в канонической системе координат.

    курсовая работа [132,8 K], добавлен 28.06.2009

  • Замечательные линии 3-го порядка: Декартов лист, циссоида Диоклеса, строфрида, верзьера Аньези. Линии четвертого и высших порядков и некоторые трансцендентные линии: спираль Архимеда, кривая кратчайшего спуска. Площадь области, ограниченной лемнискатой.

    курсовая работа [1,1 M], добавлен 07.08.2015

  • Основные свойства кривых второго порядка. Построение кривой в канонической и общей системах координат. Переход уравнения поверхности второго порядка к каноническому виду. Исследование формы поверхности методом сечений и построение полученных сечений.

    курсовая работа [166,1 K], добавлен 17.05.2011

  • Общее уравнение кривой второго порядка, преобразование систем координат. Классификация кривых по инвариантам, исследование уравнения кривой второго порядка. Изучение и примеры исследования инвариант поворота и параллельного переноса систем координат.

    курсовая работа [654,1 K], добавлен 28.09.2019

  • История развития учения о линиях. Замечательные линии третьего порядка: Декартов лист, циссоида Диоклеса, строфрида, верзьера Аньези. Линии четвертого и высших порядков и некоторые трансцендентные линии: спираль Архимеда, кривая кратчайшего спуска.

    курсовая работа [1,7 M], добавлен 12.06.2011

  • Роль идей и методов проективной геометрии в математической науке. Закономерности кривых второго порядка и кривых второго класса, основные теоремы Паскаля и Брианшона, описывающие замечательное свойство шестиугольника вписанного в кривую второго порядка.

    курсовая работа [1,9 M], добавлен 04.11.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.