- 6001. Числа Фибоначчи
Биография Леонардо Пизано Фибоначчи. Возникновение "задачи о размножении кроликов" - числовой последовательности названной впоследствии "рядом Фибоначчи". Анализ золотосечённой логарифмической последовательности. Применение чисел Фибоначчи в наше время.
- 6002. Числа Фибоначчи
Краткие биографические данные о жизни Леонардо Пизанского - первого крупного математика средневековой Европы. Его математические труды: "Liber abaci", "Liber quadratorum", "Practica geometriae". Развитие алгебры и теории чисел. Сущность чисел Фибоначчи.
Развитие математики в Западной Европе. Изучение теоретико-числовых свойств чисел Фибоначчи, возможности их применения к решению задач. Применение числа Фибоначчи в вопросах, связанных с исследованием путей в различных геометрических конфигурациях.
- 6004. Числа Эйлера
Числа Эйлера первого порядка: определения, треугольник Эйлера. Рекуррентные формулы, дополнительные тождества. Связь натуральных степеней и последовательных биномиальных коэффициентов. Зеркальное отражение перестановки. Определение чисел Стирлинга.
Число как основное понятие математики. Натуральные числа и их функции. История происхождения дробей в Древней Греции, Египте, Риме, Руси. Развитие идеи отрицательного количества в Европе. Определение действительных рациональных и иррациональных чисел.
Получение формулы численного дифференцирования при помощи первого интерполяционного многочлена Ньютона. Построение формул численного дифференцирования и аппроксимации функции. Построение интерполяционного многочлена первой степени. Теорема Больцано-Коши.
Определение первой и второй производных с помощью интерполяционных формул Ньютона, Гаусса, Стирлинга и Бесселя. Вычисление интеграла по формулам левых и правых прямоугольников. Расчет интеграла по формуле с тремя десятичными знаками и формуле Симпсона.
- 6008. Численное интегрирование
Описание метода нахождения корня (нуля) заданной функции касательных. Исследование особенностей интерполяционного полинома Ньютона. Рассмотрение общих положений численного интегрирования. Характеристика случаев применения метода прямоугольников.
- 6009. Численное интегрирование
Три метода приближённого интегрирования определённого интеграла: метод прямоугольников, метод трапеций и метод Симпсона. Определение интеграла и его геометрический смысл. Приближённые методы вычисления. Формула Симпсона (формула парабол), ее применение.
- 6010. Численное интегрирование
Алгоритм вычисления интеграла с заданной точностью. Формулы левых, правых и средних прямоугольников. Составная функция трапеции. Квадратурные формулы Ньютона-Котеса. Принцип Рунге практического оценивания погрешностей. Расчеты в малом и в целом.
Характеристика и особенности численного дифференцирования. Рассмотрение исправленного метода Эйлера, блок-схема алгоритма. Применение численного дифференцирования, Решение обыкновенных дифференциальных уравнений первого порядка с начальными данными.
Исследование особенностей влияния неравномерной концентрации одной из фракций двухфракционной газовзвеси на параметры ударной волны, движущейся из чистого газа в газовзвесь. Моделирование движение прямого скачка уплотнения в двухфракционной газовзвеси.
Построение математических моделей физических процессов и явлений. Применение вариационных методов для решения задач со свободными границами. Разработка численного алгоритма решения для двумерной задачи с неизвестной границей в прямоугольной области.
Расчет динамики транспортной системы крупного мегаполиса на основании предложенных обобщённых моделей, изучение высокоточных численных методов и реализации их в виде комплекса программ. Всестороннее тестирование программного комплекса и его апробация.
Анализ процесса динамики сосуществования видов "жертв" и "хищников" в среде их обитания при периодическом внешнем воздействии. Проведение и проверка численных экспериментов для исследования устойчивости периодических процессов в эволюционных моделях.
Методика оценки пульсационной составляющей давления и пиковых нагрузок на фасадные конструкции по результатам стационарных расчетов осредненной энергии турбулентных пульсаций. Схема дискретизации - важнейший аспект решения уравнений Навье-Стокса.
- 6017. Численное моделирование высокоскоростных соударений деформируемых тел методом сглаженных частиц
Численное решение динамических задач механики деформируемого твердого тела. Создание гибридного метода сглаженных частиц. Создание комплекса проблемно-ориентированных программ, реализующих апробированные численные методы, эффективные методы моделирования.
- 6018. Численное моделирование высокоскоростных соударений деформируемых тел методом сглаженных частиц
Численное решение динамических задач механики деформируемого твердого тела. Создание гибридного и распараллеленного методов сглаженных частиц. Визуализация численных решений динамических трехмерных задач. Сравнение алгоритмов поиска ближайших соседей.
Способы дискретизации уравнений механики и принципы построения сетки в области интегрирования. Численное решение уравнений упругости, содержание и закономерности построения соответствующих моделей. Формирование и значение нерегулярной треугольной сетки.
Исследование влияния потока плазмы крови на пространственное распределение метаболитов свертывания и динамику формирования фибринового сгустка методами численного моделирования. Изучение устойчивости к сдвиговому потоку некоторых динамических режимов.
Решение задачи динамики, состоящей в восстановлении неизвестных граничных управлений, порождающих наблюдаемое движение динамической системы. Описание динамической системы как краевой задачи для уравнения с частными производными гиперболического типа.
Особенности теплообмена, сопротивления и конвекции обтекаемых пучков труб в теплоэнергетических установках. Моделирование ламинарных течений с помощью компьютерных технологий. Использование потоков вязкой несжимаемой жидкости в коридорных структурах.
Разработка комплекса программ, позволяющего исследовать газодинамические течения с ударными и детонационными волнами, отслеживать распространение возмущений, определять места зарождения газодинамических разрывов. Пути получения высокоточных решений.
Течение несжимаемой вязкой жидкости в квадратной каверне как классическая задача гидромеханики, иллюстрирующая отрывные течения без подвода массы. Невязкая модель (модель Эйлера), его классические решения. Нестационарное турбулентное течение в каверне.
Рассмотрение основных особенностей решения задачи Коши методом Эйлера-Коши, варианты оценки погрешностей вычислений. Общая характеристика способов постройки графиков решения дифференциального уравнения и интерполяционного многочлена в одних осях.
Решение дифференциального уравнения методом Эйлера-Коши. Интерполяционный многочлен Лагранжа. Метод наименьших квадратов. График решения дифференциального уравнения. Расчет погрешности аппроксимации. Множество решений дифференциального уравнения.
Характеристика и обоснование преимуществ метода численного интегрирования обыкновенных дифференциальных уравнений, разработанного Эверхартом. Исследование алгоритма и основной идеи построения метода Эверхарта на примере решения уравнений разных видов.
Вычисление приближенных решений обыкновенного дифференциального уравнения 1 порядка. Вектор решения по методам Эйлера и Рунге-Кутты. Расчет погрешности приближенных решений. Построение графиков, демонстрирующих методы решений ОДУ второго порядка.
Определение корней квадратного уравнения аналитическим способом. Построение графика разрешающей функции в окрестности наибольшего из корней, а также численное определение наибольшего корня с использованием простейшей итерационной формулы первого вида.
Теорема о существовании корня непрерывной функции. Методы отделения и уточнения корней: алгоритмы, скорость сходимости, условия применимости, их результаты. Геометрическая интерпретация методов Ньютона и хорд. Варианты выбора начального приближения.