Наглядная топология

Признаки деформации эластичных тел. Процесс заклеивания узлов и зацеплений. Проектировка векторных полей на плоскости и двухмерных поверхностях. Рассмотрение гомоморфизма без неподвижных точек. Ознакомление со свойствами двухмерных поверхностей.

Рубрика Математика
Вид учебное пособие
Язык русский
Дата добавления 28.12.2013
Размер файла 1,1 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Рассмотрение основ векторных полей, физического смысла дивергенции и ротора. Ознакомление с криволинейными и поверхностными интегралами и методами их вычисления. Изучение основных положений теорем Гаусса-Остроградского и Стокса; примеры решения задач.

    реферат [1,5 M], добавлен 24.03.2014

  • Сущность математической теории скалярных и векторных полей, ее основные понятия и определения. Характерные черты и отличительные признаки скалярных и векторных полей, доказательства их главных теорем.

    лекция [121,6 K], добавлен 11.02.2010

  • Окружность множество точек плоскости, равноудаленных от данной точки. Эллипс, множество точек плоскости, для каждой из которых сумма расстояний до двух точек плоскости. Парабола, множество точек плоскости, равноудаленных от данной точки плоскости.

    реферат [197,7 K], добавлен 03.08.2010

  • Понятие параллельности как отношения между прямыми. Случаи расположения прямой и плоскости. Признаки параллельности прямой и плоскости. Основные свойства двух прямых. Отсутствие общих точек у прямой и плоскости. Признаки параллельности плоскостей.

    презентация [1,5 M], добавлен 14.10.2014

  • История возникновения и развития теории узлов. Плоские диаграммы узлов и зацеплений. Характеристика инварианта раскрасок, полинома Конвея и d-диаграммы как основных способов задания узлов. Применение узлов в математике, биологии, физике и химии.

    курсовая работа [2,3 M], добавлен 10.06.2014

  • Операции в скалярных и векторных полях. Наиболее распространенные типы векторных полей и задачи, которые возникают при изучении этих полей. Потенциальное, гармоническое и соленоидальное векторное поле. Векторный потенциал поля. Задачи Дирихле и Неймана.

    курсовая работа [294,8 K], добавлен 07.11.2013

  • Определение производных сложных функций при заданном значении аргумента. Исследование траектории движения тела на плоскости и построение графика функции. Характеристика нахождения максимальных и минимальных точек, экстремумов и точек перегиба функции.

    контрольная работа [790,1 K], добавлен 09.12.2011

  • Плоскость как простейший вид поверхности, ее задание тремя точками. Основные геометрические фигуры на плоскости. Определение геометрического места точек, примеры для угла и окружности. Сущность использования метода геометрических мест при решении задач.

    курсовая работа [115,2 K], добавлен 10.01.2010

  • Одномерная выборка, ее представление и числовые характеристики. Проведение исследования нормального, равномерного и экспоненциального распределения. Проверка гипотез по критерию Пирсона и Колмогорова-Смирнова. Особенность изучения двухмерных выборок.

    курсовая работа [1,2 M], добавлен 22.11.2021

  • Представление о взаимном расположении поверхностей в пространстве. Линейчатые и нелинейчатые поверхности вращения. Пересечение кривых поверхностей. Общие сведения о поверхностях. Общий способ построения линии пересечения одной поверхности другою.

    реферат [5,4 M], добавлен 10.01.2009

  • Правые и левые ориентации. Стороны прямой на плоскости и плоскости в пространстве. Деформации базисов и ориентации. Отношение одноименности отличных от нуля векторов прямой, деформируемости базисов. Задание направления движения по окружности в плоскости.

    контрольная работа [448,0 K], добавлен 09.04.2016

  • Общие сведения о пересечении кривых поверхностей. Способ вспомогательных секущих плоскостей. Пересечение поверхностей с параллельными осями. Применение способа концентрических сфер. Последовательность нахождения горизонтальных проекций заданных точек.

    методичка [2,0 M], добавлен 18.02.2015

  • Виды точек регулярной поверхности. Удельная кривизна выпуклой поверхности. Сфера как единственная овальная поверхность постоянной средней кривизны. Основные понятия и свойства седловых поверхностей. Неограниченность седловых трубок и проблема Плато.

    лабораторная работа [1,6 M], добавлен 29.10.2014

  • Сущность планиметрии как науки о свойствах точек и прямых на плоскости. Понятие точки, прямой и плоскости, принятие утверждений без доказательств. Особенности построения и содержание аксиом принадлежности, измерения, параллельности, откладывания.

    презентация [77,7 K], добавлен 12.04.2012

  • Понятие плоскости и определение ее положения в пространстве. Задание плоскости ее следами на комплексном чертеже. Плоскости и проекции уровня. Свойство проецирующих плоскостей собирать одноименные проекции всех элементов, расположенных в данной плоскости.

    реферат [69,0 K], добавлен 17.10.2010

  • Способы определения плоскости. Прямые в пространстве, признаки их параллельности, пересечения, скрещивания. Принадлежность прямой плоскости, их параллельность и скрещивание. Перпендикулярность прямой и плоскости. Взаимодействие плоскостей в пространстве.

    презентация [1,4 M], добавлен 13.04.2016

  • Уравнение плоскости, проходящей через точку и перпендикулярной заданному вектору, плоскости в отрезках, проходящей через три точки. Общее уравнение плоскости. Условие параллельности и перпендикулярности двух плоскостей. Расстояние от точки до плоскости.

    презентация [106,9 K], добавлен 21.09.2013

  • Ознакомление с основными свойствами линейных дифференциальных уравнений первого, второго и n-го порядков с постоянными коэффициентами. Рассмотрение методов решения однородных и неоднородных уравнений и применения их при решении физических задач.

    дипломная работа [181,3 K], добавлен 18.09.2011

  • Рассмотрение понятия и видов графов как совокупности непустого конечного множества элементов; условия их связанности. Доказательства существования замкнутых Эйлеровой, Гамильнотовой и бесконечной цепей. Ознакомление с элементарными свойствами деревьев.

    курсовая работа [1,4 M], добавлен 10.02.2012

  • Общая теория топологических и векторных пространств, внутренняя логика развития; аксиоматика. Структура построения нормированного пространства; рассмотрение и развитие понятия банахова пространства как определённого типа векторных пространств с нормой.

    реферат [14,9 K], добавлен 11.01.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.