Методика обучения учащихся нахождению возрастания и убывания в задачах, содержащих в условии график функции или её производной
Исследование концепции обучения учеников нахождению возрастания и убывания функции по ее графику, а так же по графику её производной. Сравнительная таблица нахождения промежутков монотонности по графикам функции или её производной. Примеры решения задач.
Рубрика | Математика |
Предмет | Математика |
Вид | статья |
Язык | русский |
Прислал(а) | Т. Митина |
Дата добавления | 19.05.2016 |
Размер файла | 96,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Вычисление производной функции и ее критических точек. Определение знака производной на каждом из интервалов методом частных значений. Нахождение промежутков монотонности и экстремумов функции. Разложение подынтегральной функции на простейшие дроби.
контрольная работа [134,7 K], добавлен 09.04.2015Расчет производной функции. Раскрытие неопределенности и поиск пределов. Проведение полного исследования функции и построение ее графика. Поиск интервалов возрастания, убывания и экстремумов. Решение дифференциальных уравнений. Расчет вероятности события.
контрольная работа [117,5 K], добавлен 27.08.2013Определение производной, понятие интеграла и определение предела функции. Дифференцирование и применение производной к решению задач. Исследование функции, вычисление интегралов и доказательство неравенств. Порядок вычисления пределов, Правило Лопиталя.
курсовая работа [612,2 K], добавлен 01.06.2014Математическое представление, условия возрастания и убывания функции y=f(x); характеристика ее основных свойств - четности, монотонности, ограниченности и периодичности. Ознакомление с аналитическим, графическим и табличным способами задания функции.
презентация [108,2 K], добавлен 21.09.2013Предел отношения приращения функции к приращению независимого аргумента, когда приращение аргумента стремится к нулю. Обозначения производной. Понятие дифференцирования функции производной и ее геометрический смысл. Уравнение касательной к кривой.
презентация [246,0 K], добавлен 21.09.2013Правило нахождения производной произведения функций. Формулы нахождения производных для функций, заданных параметрически. Геометрический смысл производной. Приращение и дифференциал функции. Наибольшее и наименьшее значения на замкнутом множестве.
контрольная работа [75,5 K], добавлен 07.09.2010Определение производной функции, геометрический смысл ее приращения. Геометрический смысл заданного отношения. Физический смысл производной функции в данной точке. Число, к которому стремится заданное отношение. Анализ примеров вычисления производной.
презентация [696,5 K], добавлен 18.12.2014Нахождение частной производной первого порядка. Определение области определения функции. Расчет производной от функции, заданной неявно. Полный дифференциал функции двух переменных. Исследование функции на экстремум, ее наименьшее и наибольшее значения.
контрольная работа [1,1 M], добавлен 12.11.2014Понятие производной, правила её применения, геометрический и физический смысл производной. Применение производной в науке и технике и о решении задач в этой области. Актуальность дифференциального исчисления в связи с научно-техническим прогрессом.
реферат [458,8 K], добавлен 17.05.2009Понятие пределов функции, нахождение ее точки экстремума, промежутков возрастания и убывания. Определенный, неопределенный и несобственный интервал. Исследование степенного ряда на сходимость на концах интервала. Решение дифференциального уравнения.
контрольная работа [116,5 K], добавлен 01.05.2012