Приближение табличных данных конкретной системой базисных функций по методу наименьших квадратов. График разности исходной (табличной) и аппроксимирующей функций. Численное решение задачи коши для обыкновенного дифференциального уравнения первого порядка.
Решение дифференциального уравнения численным методом. Исправленный и модифицированный метод Эйлера. Значение метода Эйлера. Описание алгоритма главной программы. Сравнение результатов полученных при использовании программы, а также ручным способом.
Ю.А. Виноградов - автор метода преодоления трудностей неустойчивого счета путем разделения интервала интегрирования на сопрягаемые участки. Методика расчета оболочек вращения, где каждый участок может выражаться своими дифференциальными уравнениями.
Решение задач средствами Excel. Ввод условий: создание формы, ввод исходных данных и зависимостей из математической модели, назначение целевой функции, ввод ограничений и граничных условий. Составление производственного плана. Решение транспортных задач.
Суть двукритериальной задачи выбора оптимальных портфелей. Рассмотрение специальных приемов, сводящих многокритериальную оптимизацию к однокритериальной. Решение основных однокритериальных трех задач с помощью инструмента "Поиск решений" MS Excel.
Особенности исследования нелинейной функции одной переменной. Рассмотрение основных операций с матрицами. Решение системы линейных уравнений. Изучение приближения таблично заданной функции. Способы определения экстремума функции двух переменных.
Схема решения задачи на оптимизацию с применением дифференциальных исчислений. Исторические задачи, пути и направления их разрешения. Задачи геометрического содержания на нахождение наибольшего и наименьшего значения по Архимеду, Герону, Кеплеру.
Использование программного обеспечения для построения графиков при решении математических задач. Определение функции на заданном отрезке с помощью Мастера построения графиков. Особенности их форматирования. Определение положительного корня уравнения.
Динамическое программирование в математике и теории вычислительных систем, условия его применимости для решения задач рекурсивным способом. Разработка электронного пособия для формирования умений и навыков по решению задач динамического программирования.
Использование метода Эйлера для решения дифференциального уравнения. Правило Рунге практической оценки погрешности. Построение интерполяционного многочлена Ньютона. Расчет коэффициентов системы линейных уравнений при квадратичном аппроксимировании.
Формулировка задачи линейного программирования. Решение задачи методом симплекс-таблиц и симплекс-методом с применением искусственного базиса. Составление программы для нахождения решения задачи линейного программирования методом симплексных таблиц.
Алгебраический симплекс метод. Проверка плана на оптимальность. Определение ведущих столбца и строки. Построение нового опорного плана. Решение задачи линейного программирования на минимум целевой функции. Применение симплексного метода в экономике.
Из истории начертательной геометрии, требования к простейшим изображениям и их построение. Характеристика центрального проецирования как наиболее общего случая получения проекций. Суть параллельного проецирования. Пересечение многогранников плоскостью.
Краткий анализ условия задачи, выделение из нее двух ситуаций. Введение неизвестных, установление зависимости между данными задачи и неизвестными. Составление и решение системы уравнений. Оформление задачи в виде таблицы и запись получившегося ответа.
Метод Рунге-Кутта четвертого порядка для решения уравнения первого порядка. Метод Булирша-Штера с использованием рациональной экстраполяции для системы уравнений. Описание алгоритма главной программы, блок-схема. Подбор программного обеспечения.
Характеристика центрального и параллельного проецирования. Основные варианты взаимного расположения точек. Исследование длины отрезка и углов наклона прямой к плоскостям проекции. Особенность строения изображения пространственных форм на поверхности.
Определение числа различных комбинаций элементов, составленных из различных групп. Формула полной вероятности. Построение столбцовой диаграммы, соответствующей ряду распределения. График эмпирической функции. Расчет математического ожидания и дисперсии.
Анализ вероятности события на примере процентного соотношения брака в выборке произведенных деталей. Построение ряда распределения, дисперсии, оценка вероятности попадания случайной величины в заданный интервал. Оценка среднего квадратического отклонения.
Рассмотрение способа расчета количества информации. Изучение теоретического обоснования, методики численных расчетов и программной реализации решения задач статистики, в частности исследования статистических распределений, методами теории информации.
Понимание и практическое применение современных аналитических методов для исследования свойств объектов. Изучение характеристик объектов разными математическими методами. Решение систем линейных уравнений. Двойственность задач линейного программирования.
Определение суммы начисленных простых процентов и конечной суммы при заданной годовой процентной ставке. Расчет величины средств, полученных вследствие капитализации процентов. Определение дисконта и коэффициента дисконтирования для банковского векселя.
Задача коммивояжера: понятие и сущность, основное содержание и общее описание, методы решения (жадный и деревянный метод, методы ветвей и границ, алгоритм Дейкстры) и их сравнительная характеристика. Сферы применения задачи коммивояжера на практике.
- 2783. Решение задачи Коши
Основное содержание и подходы к решению задачи Коши. Принципы формирования численных методов, их типы: явные и неявные, одно- и многошаговые. Основные глобальные и локальные ошибки, возникающие при их применении. Выбор шага метода и его обоснование.
Возможности применения производной при решении задач на оптимизацию в школьном курсе математики. Формулировка и численные методы решения задач одномерной оптимизации по заданным алгоритмам. Разработка модели факультативного урока по математике.
- 2785. Решение задачи С6
Изучение процесса подготовки учащихся к решению задачи С6 на Едином государственном экзамене. Исследование делимости и её признаков, десятичной записи числа, уравнений с целыми числами. Характеристика свойств арифметической и геометрической прогрессий.
Место и роль уравнений (неравенств) с параметрами, сводящихся к квадратным в школьном курсе математики. Изучение методов их решения и конструирования. Применение свойств квадратного трехчлена при решении нестандартных заданий (задачи с параметром).
- 2787. Решение игр в математике
Теория игр как раздел математики, предметом которого является изучение математических моделей принятия оптимальных решений в условиях конфликта, ее основные понятия и утверждения. Методы решения игры: Брауна-Робинсона, монотонный итеративный алгоритм.
Вариационный подход Ритца. Схема метода Ритца. Базис из функций с финитным носителем. Пример построения схемы конечных элементов. Интерполяционный многочлен Лагранжа. Одномерные элементы, ассоциируемые с ними иерархические базисные функции, аппроксимации.
Краевая задача для уравнения эллиптического типа. Вариационные постановки основных эллиптических задач. Прямые методы вариационного исчисления. Неединственность решения дифференциальных уравнений. Граничное условие первого, второго и третьего рода.
Виды систем из p линейных алгебраических уравнений с n неизвестными переменными. Недостаток метода Крамера - трудоемкость вычисления определителей, когда число уравнений системы больше трех. Алгоритм исключения неизвестных переменных методом Гауса.