Універсальний метод точного опису і аналізу марковських випадкових еволюцій з континуумом напрямків в евклідових просторах довільної розмірності. Вивчення багатовимірних узагальнень класичного телеграфного процесу Голдстейна-Каца, отримання їх розподілів.
Знаходження оцінок зближення розподілу рангу слабкозаповненої випадкової матриці у полі до граничного розподілу при заданому відношенні числа рядків до числа стовпців. Аналіз імовірності сумісності неоднорідної системи лінійних випадкових рівнянь.
Обчислення виразів, з використанням розподільної властивості множення в прямому (розкриття дужок) і зворотному (винесення спільного множника за дужки) порядку. Сполучна та переставна властивості множення відносно для множення раціональних чисел.
Обробка експериментальних даних при надходженні додаткових результатів вимірювань у випадку відомої операторної моделі вимірювань. Аналіз парето-оптимального оцінювання виходу із заданого приладу при невідомій операторній моделі процесу вимірювань.
Теоретичні основи обробки та інтерпретації збурених результатів вимірювань. Редукція до обчислень при відомій та невідомій моделях процесу вимірювань, які застосовують у випадку наявності та відсутності стабільності статистичних показників збурень.
Удосконалення пасажирських перевезень на міському електричному транспорті. Розробка оптимізаційної моделі розподілу наявного рухомого складу по маршрутах міського електричного транспорту. Розрахунок експлуатаційних характеристик маршрутів транспорту.
Постановка задачі розпізнавання кривих на кольорових растрових зображеннях графічних документів. Програмна реалізація розробленого методу розпізнавання кривих на кольорових растрових зображеннях кругових діаграм у вигляді автоматизованої системи.
Основные этапы развития математики. Архимед как пионер математической физики. Машины, построенные с использованием рычага и блока. Внедрение технических изобретений в Римской империи. Открытия Коперника. Роль математики в инженерном образовании.
Математика как экспериментальная наука, часть теоретической физики и член семейства естественных наук. История и основные этапы ее становления и развития, выдающиеся ученые и их достижения. Оценка роли и значения математики в инженерном направлении.
Место высшей математики в инженерной деятельности. Основные направления развития процессов численных вычислений, приближенных методов и их приложений. Смысл математизации знаний. Привлечение сложного математического аппарата к решению прикладных задач.
Математика как наука о числе, количестве и пространстве. Особенности развития математического учения и ее влияние на общество. Перекрестный и сравнительный анализ выбора направления развития математики. Разработки по внедрению математических изобретений.
Первые достижения древних людей в арифметике и геометрии. Цели, принципы, структура и содержание математического образования. Развитие научно-технического прогресса, примеры практического использования математических знаний в инженерной деятельности.
Повышение культуры мышления, формирование научного мировоззрения как цель изучения математики. Современное понятие математики. Применение алгебраических структур. Математические модели объектов. Проникновение математики в различные отрасли знаний.
- 2894. Роль математики в химии
Решение химических задач и проблем методами современной математики. Симметрия в химии, дифференциальные уравнения. Графическое представление молекул и их свойств – теория графов в химии. Математическая химия. Пример математического моделирования.
Анализ изучения важнейшей математической константы, которая выражает отношение длины окружности к ее диаметру. Практическое применение числа "Пи". Проведение исследования современных представлений о культуре. Взаимосвязь пирамиды Хеопса и числа "Пи".
Теорема сложения и умножения вероятностей. Формула Бейеса. Производящая функция. Дискретные случайные величины. Показательное распределение и его числовые характеристики. Статистическое распределение выборки. Криволинейная корреляция. Проверка гипотезы.
Основные положения алгебры логики и синтез логических функций. Давние традиции преподавания логики в русской школе. Минимизация полностью определённых и недоопределенных булевых функций. Карта Карно и законы суждений. Силлогистика и графический синтез.
Рассмотрение биографии и научной деятельности великого российского ученого, математика, академика Андрея Николаевича Колмогорова. Вся жизнь его была посвящена поиску истины и делу Просвещения. Именно его с полным правом можно назвать Просветителем.
Розглянута задача швидкодії при наявності статичної перешкоди. Розробка алгоритму огинання перешкоди та віднаходження оптимального часу руху. Розв’язання систем лінійних алгебрагічних рівнянь. Обрахунок мінімального часу переміщення керованої системи.
- 2900. Ряд Фурье
Теория многочисленной аппроксимации для периодических функций рядами Фурье. Явление Гиббса на примере прямоугольной волны. Фильтрация зашумленного сигнала с помощью быстрых преобразований Фурье. Преобразование сигнала из временной области в частотную.
Поняття про ряди, їх різновиди та відмінні особливості. Основні поняття та означення числових рядів. Знакододатні ряди та достатні ознаки збіжності, абсолютні та умовні. Теорема Абеля та її практичне використання. Головні властивості степеневих рядів.
Классификация рядов динамики, аналитические показатели изменения уровней ряда динамики. Методы измерения параметров тренда, модели сезонных колебаний. Элементы прогнозирования на основе тренда. Критерий Дарбина-Уотсона для выявления автокорреляции.
Некоторые сведения о последовательностях. Понятия, свойства числовых, функциональных, знакопеременных, степенных рядов. Признаки их сходимости: сравнения, Даламбера, Коши, Лейбница. Теорема Абеля. Разложение основных элементарных функций в степенные ряды.
- 2904. Ряды Фурье
Определение основных понятий рядов в высшей математике, их классификация и характеристики: положительные, знакочередующиеся, функциональные, степенные ряды и ряды Фурье (в том числе четных, нечетных и непериодических функций). Абсолютная сходимость.
- 2905. Ряды Фурье
Члены тригонометрических рядов. Свойство системы тригонометрических функций. Ряд Тейлора. Особенности ряда Фурье четной и нечетной функции. Рабочие формулы для разложения функции в ряд Фурье. Применение программы MatLab для вычисления коэффициентов ряда.
Разложение тригонометрической функции в ряд Фурье с заданным интервалом. Создание линейных и квадратичных моделей. Составление кода программы и блок-схемы данной задачи. Определение шага интегрирования и точности вычислений. Тестирование программы.
Содержательное сравнение теории множеств с самопринадлежностью (обладающей непротиворечивостью) с более ранними подходами, которые используют ослабление или отрицание аксиомы фундирования. Анализ поиска доказательств непротиворечивости теории множеств.
Задачи вычисления неопределенного и определенного интегралов от функций одной переменной. Дифференциальные уравнения первого и высших порядков. Формирование умения использовать методы математики для решения профессиональных задач. Примеры решения задач.
Рассмотрение задачи оптимизации дробно-линейной функции с линейными ограничениями с точки зрения проективной геометрии. Характеристика задачи дробно-линейного программирования проективным преобразованием. Особенности максимизирования линейной функции.
Проведение исследования многомерных сингулярных интегральных уравнений. Особенность разработки основных приближенных методов для вычисления многомерных интегралов. Характеристика главной связи между разными формами средств представления функций.