Постановка задачи интерполяции и общие идеи её решения

Описание интерполирования методом Лагранжа. Интерполяционная формула Ньютона. Характеристика пользовательского интерфейса программной реализации рассматриваемых методов. Алгоритм вывода графика проинтерполированной функции. Информация о программе.

Рубрика Математика
Вид контрольная работа
Язык русский
Дата добавления 23.04.2011
Размер файла 170,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

4

Постановка задачи интерполяции и общие идеи её решения

Одной из важнейших задач численного анализа является задача интерполяции функции: требуется восстановить функцию f(x) для всех значений x [a, b] если известны её значения в некотором конечном числе точек этого отрезка. Эти известные значения, как правило, находятся в результате наблюдений или измерений в каком - то эксперименте либо в результате каких - то вычислений.

Интерполяция применяется во многих задачах, связанных с вычислениями. Укажем некоторые из этих задач. Обработка физического эксперимента - построение приближенных формул по данным вычислительного эксперимента. Здесь возникают нестандартные задачи интерполяции, так как обычно пишутся формулы, возможно, более простой структуры.

Интерполяционные формулы используются также при вычислении интегралов, при написании разностных аппроксимаций для дифференциальных уравнений, на основе интегральных тождеств.

Часто требуется восстановить функцию f (x) на отрезке a ? x ? b, если известны её значения в некотором конечном числе точек этого отрезка. Например, пусть на отрезке a ? x ? b задана сетка:

= и в её узлах заданы значения функции у (x), равные у () =, . . . , у () =, . . . , у () =. Требуется построить интерполянту - функцию f(x), совпадающую с функцией у (x) в узлах сетки:

f() = i = 0, 1, . . . , n.

Основная цель интерполяции - получить быстрый (экономичный) алгоритм вычисления значений f (x) для значений x, не содержащихся в таблице данных. Интерполирующие функции строятся в виде линейных комбинаций некоторых элементарных функций:

f(x) = ,

где {} - фиксированные линейно независимые функции, - не определённые пока коэффициенты. В качестве линейно- независимых функций можно выбрать степенные полиномы, что и делается в интерполяционных методах Ньютона и Лагранжа.

Описание интерполирования методом Лагранжа.

Интерполяционная формула Лагранжа:

L(x) = ,

где L(x) - многочлен n-й степени. x - абсцисса k-го узла функции, а f(x) - его ордината. Подставляя вместо x в формулу многочлена конкретное значение, мы можем найти значение многочлена для этой точки.

Описание интерполирования методом Ньютона.

Интерполяционная формула Ньютона:

P(x) =f(x) + (x - x)f(x, x) + (x - x)(x - x)f(x, x, x) +

. . . + (x - x)(x - x) . . . (x - x)f (x, x, x, . . . , x),

где f (x, x, x, . . . , x) =

- разделённая разность n - го порядка. P(x) - многочлен n-й степени. Аналогично интерполяции методом Лагранжа, подставляя вместо x в формулу многочлена конкретное значение, мы можем найти значение многочлена для этой точки.

Чтобы оценить погрешность результата вычислений методов Ньютона и Лагранжа обычно используют формулу:

f(x) - P(x) = , [a; b],

лагранж интерфейс интерполяционный программа

где P(x) - полученный полином, а f(x) - истинная функция.

Описание пользовательского интерфейса программной реализации вышеперечисленных методов.

Для запуска данной программы следует выделив файл 1.exe, нажать клавишу “Enter”. На экране появится главное меню:

Выбор пунктов осуществляется перемещением выделения на них клавишами «^» и «v» соответственно вверх и вниз и затем нажатием «Enter» на выделенном пункте. Затем мы выбираем пункт меню «Metod Lagranzha» и перед нами появится окно:

То есть после ввода данных (количества точек, их значений и значения абсциссы искомой точки) выводиться ответ. Затем после нажатия “Enter” выводиться график проинтерполированной функции

Затем после очередного нажатия “Enter” мы вновь выходим в главное меню и после совершения аналогичных действий, но уже в пункте “Metod Nyutona” мы получим следующие результаты:

После нажатия “Enter” выводиться график функции:

При выборе пункта “O programme” на экран выводится информация, находящаяся в текстовом файле O_prog на диске 3, 5 А, содержащая краткую аннотацию к программе.

После выполнения каждого пункта мы выходим в главное меню, где повторно можем выбрать один из трёх пунктов. Для завершения работы программы мы должны выбрать пункт «Exit» или нажать клавишу «Esc» находясь в главном меню

Литература

1. Самарский, Гулин. «Численные методы».

2. Самарский. «Введение в численные методы».

3. Фаронов. «Turbo Pascal 7. 0».

Размещено на Allbest.ru


Подобные документы

  • Метод решения задачи, при котором коэффициенты a[i], определяются непосредственным решением системы - метод неопределенных коэффициентов. Интерполяционная формула Ньютона и ее варианты. Построение интерполяционного многочлена Лагранжа по заданной функции.

    лабораторная работа [147,4 K], добавлен 16.11.2015

  • Интерполяционная схема Эйткина. Связь конечных разностей и производных. Распространение ошибки исходных данных при вычислении конечные разности. Свойства разделенной разности. Интерполяционная формула Ньютона для не равноотстоящих узлов. Полином Лагранжа.

    лекция [92,3 K], добавлен 06.03.2009

  • Применение первой и второй интерполяционной формул Ньютона. Нахождение значений функции в точках, не являющимися табличными. Bспользование формулы Ньютона для не равностоящих точек. Нахождение значения функции с помощью интерполяционной схемы Эйткена.

    лабораторная работа [481,0 K], добавлен 14.10.2013

  • Иоганн Карл Фридрих Гаусс - величайший математик всех времен. Интерполяционные формулы Гаусса, дающие приближенное выражение функции y=f(x) при помощи интерполяции. Области применение формул Гаусса. Основные недостатки интерполяционных формул Ньютона.

    контрольная работа [207,3 K], добавлен 06.12.2014

  • Непрерывная и точечная аппроксимация. Интерполяционные полиномы Лагранжа и Ньютона. Погрешность глобальной интерполяции, квадратичная зависимость. Метод наименьших квадратов. Подбор эмпирических формул. Кусочно-постоянная и кусочно-линейная интерполяции.

    курсовая работа [434,5 K], добавлен 14.03.2014

  • Описание методов решения системы линейного алгебраического уравнения: обратной матрицы, Якоби, Гаусса-Зейделя. Постановка и решение задачи интерполяции. Подбор полиномиальной зависимости методом наименьших квадратов. Особенности метода релаксации.

    лабораторная работа [4,9 M], добавлен 06.12.2011

  • Построение приближающей функции, используя исходные данные, с помощью методов Лагранжа, Ньютона и Эйткена (простая и упрощенная форма реализации). Алгоритм вычисления интерполяционного многочлена. Сравнение результатов реализации методов в среде Mathcad.

    курсовая работа [299,3 K], добавлен 30.04.2011

  • Нахождение экстремумов функций методом множителей Лагранжа. Выражение расширенной целевой функции. Схема алгоритма численного решения задачи методом штрафных функций в сочетании с методом безусловной минимизации. Построение линий ограничений.

    курсовая работа [259,9 K], добавлен 04.05.2011

  • Кінцеві різниці різних порядків. Залежність між кінцевими різницями і функціями. Дискретний і неперервний аналіз. Поняття про розділені різниці. Інтерполяційна формула Ньютона. Порівняння формул Лагранжа і Ньютона. Інтерполяція для рівновіддалених вузлів.

    контрольная работа [75,6 K], добавлен 06.02.2014

  • Способы построения интерполяционных многочленов Лагранжа, основные этапы. Интерполирование функций многочленами Ньютона, способы построения графика. Постановка задачи аппроксимации функции одной переменной, предпосылки повышения точности расчетов.

    презентация [204,5 K], добавлен 18.04.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.