Аналитическая геометрия

Сущность векторной и скалярной величины. Линейные операции над векторами. Декартовы прямоугольные координаты в пространстве. Координаты векторов. Деление отрезка в заданном отношении. Направляющие косинусы. Кривые второго порядка. Уравнение фигуры.

Рубрика Математика
Вид курсовая работа
Язык русский
Дата добавления 17.01.2011
Размер файла 295,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Файл не выбран
РћР±Р·РѕСЂ

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ

1. Основные понятия

Понятие вектора широко применяется в экономике, математике, физике и других науках, при этом одинаково широко используется как алгебраическая концепция изложения векторного анализа, так и его геометрическая интерпретация, в рамках которой различаются величины двух видов: скалярные и векторные.

Скалярной величиной или скаляром называется величина, которая полностью определяется одним числом, выражающим отношение этой величины к соответствующей единице измерения, например, цена, количество проданного товара, стоимость и т.д.

Векторной величиной или вектором называется величина, для задания которой кроме численного значения необходимо указать и ее направление в пространстве, например, изменение темпов производства (рост или падение), колебание курса акций на бирже и т.д.

Векторная величина графически обычно изображается как связанный вектор или направленный отрезок, т.е. отрезок прямой, у которого указано, какая из ограничивающих точек является его началом, а какая концом. Но в отличие от направленного отрезка, для описания которого необходимо указать начальную точку, длину и направление, свободный вектор или просто вектор представляет собой множество всех эквивалентных между собой связанных векторов и вполне характеризуется:

· направлением;

· длиной (модулем).

Для задания такого множества достаточно указать какой-либо один из связанных векторов этого множества - представитель вектора, в качестве которого обычно выбирается связанный вектор с началом, совпадающим с началом координат.

Вектор обозначается одной маленькой буквой со стрелкой сверху, например, , или двумя буквами со стрелкой , где точка есть начало вектора (его точка приложения), а _ его конец.

Длина вектора называется его модулем, обозначается или и равна длине любого его представителя, т.е. расстоянию между начальной и конечной точками связного вектора . Вектор, длина которого равна нулю, называется нуль-вектором и обозначается .

Два вектора называются равными, если:

1. равны их длины;

2. они параллельны;

3. они направлены в одну сторону.

Иными словами, равные векторы получаются один из другого параллельным переносом в пространстве.

Векторы называются коллинеарными, если они расположены на одной или на параллельных прямых, и компланарными, если они лежат на одной или на параллельных плоскостях.

Вектор, длина которого равна единице, называется единичным вектором или ортом. Орт обозначатся .

2. Линейные операции над векторами

Сложение вектора производится по правилу параллелограмма: векторы и сносятся в общую точку (рис. 4.1), на них строят параллелограмм и его диагональ называют суммой векторов и .

Размещено на http://www.allbest.ru/

Рис. 4.1

Поскольку вектор равен , то можно дать другое правило нахождения суммы (правило треугольника): суммой векторов и является вектор, идущий из начала в конец , если вектор приложен к концу вектора , т.е.:

(4.1)

Это правило распространяется на любое число слагаемых: если векторы образуют ломаную , то суммой этих векторов является вектор , замыкающий эту ломаную, т.е.:

(4.2)

В частности, если ломаная замыкается, т.е. , то сумма ее звеньев равна нуль-вектору .

Сложение векторов подчиняется обычным законам сложения _ сочетательному и переместительному, а также обладает обратной операцией - вычитанием.

Разностью двух векторов и , отложенных от одной точки является вектор, направленный из конца вычитаемого вектора в конец уменьшаемого вектора , т.е. (Рис. 4.2.). Это правило следует из формулы (1): т.к. , то .

Рис. 4.2

Векторы можно не только складывать и вычитать, но и умножать на числа (скаляры).

Вектор равен , где _ некоторое число, если:

1. коллинеарен ;

2. длина вектора отличается от длины вектора в раз, т.е. ;

3. при , и направлены в одну сторону, при _ в разные.

Произведение вектора на скаляр обладает следующими свойствами:

1. ;

2. ;

3. ;

4. ;

5. .

3. Проекция вектора на ось

Пусть даны ось и вектор . Проектируя начало и конец вектора на ось , получим на ней вектор . Проекцией вектора на ось называется число, равное длине вектора , взятой со знаком плюс или минус в зависимости от того, направлен ли вектор в ту же сторону, что и ось или в противоположную. Проекция вектора на ось обозначается .

Свойства проекций:

1. , где _ угол между вектором и осью ;

2. ;

3. .

Пусть - произвольная конечная система векторов; _ произвольная система действительных чисел. Вектор называется линейной комбинацией векторов этой системы.

Из свойства проекций следует, что:

4. Линейная зависимость векторов

Говорят, что векторы линейно независимы, если из равенства:

(4.3)

следует, что .

В противном случае векторы называются линейно зависимыми. Если какой-нибудь вектор можно представить в виде , то говорят, что вектор линейно выражается через векторы .

Теорема. Векторы линейно зависимы тогда и только тогда, когда, по крайней мере, один из них линейно выражается через остальные.

Следствие. Если векторы линейно независимы, то ни один из них нельзя выразить через остальные; в частности, ни один из них не может быть нулевым.

Система, состоящая из одного вектора, линейно зависима тогда и только тогда, когда этот вектор нулевой. Любые два неколлинеарных вектора и линейно независимы. В самом деле, предположим, неколлинеарные векторы и линейно зависимы. Тогда, по предыдущей теореме, один из них, например , линейно выражается через второй, т.е. , а это противоречит неколлинеарности и . Следовательно, и - линейно независимы.

Пусть и неколлинеарные векторы, _ произвольный вектор компланарный векторам и . Отложим векторы и от одной точки , т.е. построим (Рис.4.3).

Рис. 4.3

Из параллелограмма видно, что:

.

Следовательно, любые три компланарных вектора и линейно зависимы.

Любые три некомпланарных вектора и линейно независимы.

Если предположить, что три некомпланарных вектора и линейно зависимы, то один из них, например , линейно выражается через и , т.е. , а это говорит о том, что три вектора и лежат в одной плоскости, что противоречит условию.

Три вектора и линейно зависимы тогда и только тогда, когда определитель, составленный из их координат, равен нулю.

Пусть векторы и в некотором базисе имеют координаты , и соответственно. Тогда векторы и линейно зависимы тогда и только тогда, когда линейно зависимы их координатные столбцы. Значит, векторы и линейно зависимы тогда и только тогда, когда существуют числа , неравные одновременно нулю, что выполняется равенство:

.

Линейная зависимость означает, что существует ненулевой набор коэффициентов такой, что:

(4.4)

Если один из векторов, например, , является нулевым, то система окажется линейно зависимой, т.к. равенство (4.4) будет выполнено при .

Теорема. Векторы линейно зависимы тогда и только тогда, когда один из векторов является линейной комбинацией остальных.

5. Базис. Координаты вектора в базисе

Определим понятие базиса на прямой, плоскости и в пространстве.

Базисом на прямой называется любой ненулевой вектор на этой прямой. Любой другой вектор , коллинеарный данной прямой, может быть выражен через вектор в виде .

Базисом на плоскости называются любых два линейно независимых вектора и этой плоскости, взятые в определенном порядке. Любой третий вектор , компланарный плоскости, на которой выбран базис , может быть представлен в виде .

Базисом в трехмерном пространстве называются любые три некомпланарных вектора , взятые в определенном порядке. Такой базис обозначается. Пусть _ произвольный вектор трехмерного пространства, в котором выбран базис . Тогда существуют числа такие, что:

(4.5)

Коэффициенты называются координатами вектора в базисе , а формула (4.5) есть разложение вектора по данному базису.

Координаты вектора в заданном базисе определяются однозначно. Введение координат для векторов позволяет сводить различные соотношения между векторами к числовым соотношениям между их координатами. Координаты линейной комбинации векторов равны таким же линейным комбинациям соответствующих координат этих векторов.

6. Декартовы прямоугольные координаты в пространстве. Координаты точек. Координаты векторов. Деление отрезка в данном отношении

Декартова прямоугольная система координат в пространстве определяется заданием единицы масштаба для измерения длин и трех пересекающихся в точке взаимно перпендикулярных осей, первая из которых называется осью абсцисс , вторая - осью ординат , третья - осью аппликат ; точка _ начало координат (Рис. 4.4).

Положение координатных осей можно задать с помощью единичных векторов , направленных соответственно по осям . Векторы называются основными или базисными ортами и определяют базис в трехмерном пространстве.

Пусть в пространстве дана точка . Проектируя ее на ось , получим точку . Первой координатой или абсциссой точки называется длина вектора , взятая со знаком плюс, если направлен в ту же сторону, что и вектор , и со знаком минус _ если в противоположную. Аналогично проектируя точку на оси и , определим ее ординату и аппликату . Тройка чисел взаимно однозначно соответствует точке .

Система координат называется правой, если вращение от оси к оси в ближайшую сторону видно с положительного направления оси совершающимися против часовой стрелки, и левой, если вращение от оси к оси в ближайшую сторону видно совершающимися по часовой стрелке.

Вектор , направленный из начала координат в точку называется радиус-вектором точки , т.е.:

(4.6)

Если даны координаты точек и , то координаты вектора получаются вычитанием из координат его конца координат начала

: или .

Следовательно, по формуле (4.5):

или (4.7)

При сложении (вычитании) векторов их координаты складываются (вычитаются), при умножении вектора на число все его координаты умножаются на это число.

Длина вектора равна квадратному корню из суммы квадратов его координат.

(4.8)

Длина вектора , заданного координатами своих концов, т.е. расстояние между точками и вычисляется по формуле:

(4.9)

Если и коллинеарны, то они отличаются друг от друга скалярным множителем. Следовательно, у коллинеарных векторов координаты пропорциональны:

(4.10)

Пусть точка делит отрезок между точками и в отношении , тогда радиус-вектор точки выражается через радиусы-векторы и его концов по формуле:

.

Отсюда получаются координатные формулы:

.

В частности, если точка делит отрезок пополам, то и

, т.е. .

7. Направляющие косинусы

Пусть дан вектор . Единичный вектор того же направления, что и (орт вектора ) находится по формуле:

.

Пусть ось образует с осями координат углы . Направляющими косинусами оси называются косинусы этих углов: . Если направление задано единичным вектором , то направляющие косинусы служат его координатами, т.е.:

.

Направляющие косинусы связаны между собой соотношением:

.

Если направление задано произвольным вектором , то находят орт этого вектора и, сравнивая его с выражением для единичного вектора , получают:

8. Скалярное произведение

Скалярными произведением двух векторов и называется число, равное произведению их длин на косинус угла между ними:

.

Скалярное произведение обладает следующими свойствами:

1. ;

2. ;

3. ;

4. Если и _ ненулевые векторы, то тогда и только тогда, когда эти векторы перпендикулярны. Если , то угол между и - острый, если , то угол - тупой;

5. Скалярный квадрат вектора равен квадрату его длины, т.е. . Следовательно, .

Геометрический смысл скалярного произведения: скалярное произведение вектора на единичный вектор равно проекции вектора на направление, определяемое , т.е.

.

Из определения скалярного произведения вытекает следующая таблица умножения ортов :

.

Если векторы заданы своими координатами и , т.е. , , то, перемножая эти векторы скалярно и используя таблицу умножения ортов, получим выражение скалярного произведения через координаты векторов:

.

9. Векторное произведение

Векторным произведением вектора на вектор называется вектор , длина и направление которого определяется условиями:

1. , где _ угол между и ;

2. перпендикулярен каждому из векторов и ;

3. направлен так, что кратчайший поворот от к виден из его конца совершающимся против часовой стрелки.

Векторное произведение обладает следующими свойствами:

1. ;

2. ;

3. ;

4. Векторное произведение равно нулю (нуль вектору) тогда и только тогда, когда и коллинеарны. В частности, для любого вектора ;

5. Если и неколлинеарны, то модуль векторного произведения равен площади параллелограмма построенного на этих векторах, как на сторонах.

Из первых трех свойств следует, что векторное умножение суммы векторов на сумму векторов подчиняется обычным правилам перемножения многочленов. Надо только следить за тем, чтобы порядок следования множителей не менялся.

Основные орты перемножаются следующим образом:

.

Если и , то c учетом свойств векторного произведения векторов, можно вывести правило вычисления координат векторного произведения по координатам векторов-сомножителей:

.

Если принять во внимание полученные выше правила перемножения ортов, то:

(4.11)

Более компактную форму записи выражения для вычисления координат векторного произведения двух векторов можно построить, если ввести понятие определителя матрицы.

Рассмотрим частный случай, когда вектора и принадлежат плоскости , т.е. их можно представить как и .

Если координаты векторов записать в виде таблицы следующим образом: , то можно сказать, что из них сформирована квадратная матрица второго порядка, т.е. размером , состоящая из двух строк и двух столбцов. Каждой квадратной матрице ставится в соответствие число, которое вычисляется из элементов матрицы по определенным правилам и называется определителем. Определитель матрицы второго порядка равен разности произведений элементов главной диагонали и побочной диагонали:

.

В таком случае:

Абсолютная величина определителя, таким образом, равна площади параллелограмма, построенного на векторах и , как на сторонах.

Если сравнить это выражение с формулой векторного произведения (4.7), то:

(4.12)

Это выражение представляет собой формулу для вычисления определителя матрицы третьего порядка по первой строке.

Таким образом:

Определитель матрицы третьего порядка вычисляется следующим образом:

и представляет собой алгебраическую сумму шести слагаемых.

Формулу для вычисления определителя матрицы третьего порядка легко запомнить, если воспользоваться правилом Саррюса, которое формулируется следующим образом:

· Каждое слагаемое является произведением трех элементов, расположенных в разных столбцах и разных строках матрицы;

· Знак “плюс” имеют произведения элементов, образующих треугольники со стороной, параллельной главной диагонали;

· Знак “минус” имеют произведения элементов, принадлежащих побочной диагонали, и два произведения элементов, образующих треугольники со стороной, параллельной побочной диагонали.

10. Смешанное произведение

Смешанным произведением тройки векторов , и называется число, равное скалярному произведению вектора на векторное произведение . Если рассматриваемые векторы , и некомпланарны, то векторное произведение есть вектор, длина которого численно равна площади построенного на них параллелограмма. Направлен этот вектор по нормали к плоскости параллелограмма. Если этот вектор скалярно умножить на вектор , то получившееся число будет равно произведению площади основания параллелепипеда, построенного на тройке векторов , и , и его высоты, т.е. объему этого параллелепипеда.

Таким образом, смешанное произведение векторов (которое обозначается ) есть число, абсолютная величина которого выражает объем параллелепипеда, построенного на векторах , и .

Знак произведение положителен, если векторы , и , образуют правую тройку векторов, т.е. вектор направлен так, что кратчайший поворот от к виден из его конца совершающимся против часовой стрелки.

Из геометрического смысла смешанного произведения непосредственно следует необходимое и достаточное условие некомпланарности векторов , и : для того, чтобы векторы , и были некомпланарными необходимо и достаточно, чтобы их смешанное произведение было отлично от нуля. Если

, и ,

,

или в свернутой форме:

.

Справедливы следующие свойства смешанного произведения векторов:

1. Смешанное произведение не меняется при циклической перестановке его сомножителей ;

2. При перестановке двух соседних множителей смешанное произведение меняет свой знак на противоположный

.

11. Прямая. Основные понятия

Прямая в пространстве может быть однозначно определена, если известна точка, принадлежащая прямой, и ненулевой вектор, параллельный прямой (направляющий вектор прямой). Пусть задана такая точка и вектор (Рис. 5.1).

Рис. 5.1

Если _ произвольная текущая точка прямой , то вектор коллинеарен вектору и их соответствующие координаты пропорциональны.

(5.1)

Этим соотношениям удовлетворяют координаты любой точки прямой и только этой прямой. Равенства (5.1) называются каноническими уравнениями прямой в пространстве.

Обозначим радиус-вектор точки , _ радиус-вектор точки . Тогда:

(5.2)

В силу коллинеарности векторов и существует число такое, что . Тогда из (5.2) получим векторное параметрическое уравнение прямой:

(5.3)

В координатной форме уравнение (5.3) равносильно трем уравнениям:

, , (5.4)

которые называются параметрическими уравнениями прямой в пространстве.

Исключая из уравнений (5.4) параметр , легко перейти к каноническим уравнениям прямой (5.1).

Обратный переход от (5.1) к (5.4) осуществляют, приравнивая каждое из трех соотношений (5.1) к . При этом, если знаменатель какого-либо соотношения равен нулю, то необходимо приравнять к нулю его числитель.

Пусть заданы точки и . Составим уравнение прямой, проходящей через заданные точки, пользуясь
рис. 5.1.

Очевидно, что в этом случае направляющим вектором прямой будет вектор . Используя (5.1), получаем искомые уравнения в виде:

(5.5)

Прямую в пространстве можно определить как пересечение двух плоскостей. Рассматривая совместно уравнения этих плоскостей, получим уравнение линии в общем виде:

(5.6)

Система двух уравнений первой степени (5.6) определяет прямую линию при условии, что нормальные векторы и неколлинеарны. Только в этом случае плоскости будут пересекаться. Уравнения (5.6) носят название «общее уравнение прямой в пространстве».

Чтобы перейти от общих уравнений прямой (5.6) к ее каноническим уравнениям (5.1), нужно на прямой найти какую-нибудь точку и определить ее направляющий вектор .

Точку находят, давая произвольное значение одной из переменных , или . Решая систему (5.6), получают значения оставшихся двух переменных. Направляющий вектор параллелен линии пересечения плоскостей (5.6) и, следовательно, перпендикулярен обоим нормальным векторам плоскостей:

.

Поэтому в качестве можно взять вектор:

(5.7)

12. Взаимное расположение прямых

Пусть даны две прямые: и . Эти прямые заданы своими точками и и направляющими векторами и . Поэтому:

.

Параллельность или перпендикулярность прямых равносильна, соответственно, параллельности или перпендикулярности их направляющих векторов. Поэтому условие перпендикулярности прямых можно записать в виде:

или .

Условие параллельности: .

Возможны четыре случая взаимного расположения прямых:

Прямые совпадают: , т.е.

.

Прямые параллельны: непараллелен , но , т.е. .

Прямые пересекаются: непараллелен , но , , _ компланарны, т.е.

(5.8)

Прямые скрещиваются: , , _ некомпланарны, т.е. .

Условие (5.8) выполняется в случаях I-III и означает, что прямые лежат в одной плоскости.

13. Плоскость. Основные понятия

Всякая поверхность в пространстве задается в декартовых координатах уравнением вида .

Если _ многочлен -й степени, то соответствующая поверхность называется алгебраической поверхностью -го порядка или просто поверхностью -го порядка.

Всякая поверхность 1-го порядка есть плоскость, т.е. всякое уравнение 1-й степени:

(6.1)

определяет плоскость. Уравнение (6.1) называется общим уравнением плоскости.

Вектор , координатами которого являются коэффициенты при в уравнении (6.1), перпендикулярен плоскости (6.1) по свойству скалярного произведения векторов. Этот факт будет постоянно использоваться в дальнейшем. Вектор называют нормальным вектором плоскости (6.1).

Уравнение плоскости, проходящей через данную точку перпендикулярно вектору , имеет вид:

(6.2)

Очевидно, что уравнение (6.1) имеет смысл только тогда, когда хотя бы один из коэффициентов не равен нулю.

вектор косинус координата уравнение

14. Кривые второго порядка. Уравнение фигуры

Геометрической фигурой или просто фигурой на плоскости называется множество точек. Задать фигуру - значит указать, из каких точек плоскости она состоит. Одним из важных способов задания фигуры на плоскости является ее задание при помощи уравнений с двумя неизвестными. Произвольное уравнение с двумя неизвестными и записывается в виде . Если выбрать на плоскости некоторую прямоугольную систему координат, то в ней уравнение называется уравнением фигуры при выполнении следующих двух условий:

1. Если точка принадлежит фигуре , то координаты являются решениями уравнения , т.е. ;

2. если пара чисел является решением уравнения , то точка принадлежит фигуре .

Это определение в более компактной записи выглядит следующим образом. Уравнение называется уравнением фигуры, если , то есть - решение уравнения .

Из определения уравнения фигуры следует, что фигура состоит только из тех точек плоскости, координаты которых являются решениями уравнения , т.е. уравнение фигуры задает эту фигуру.

Возможны два вида задач:

1. дано уравнение и надо построить фигуру , уравнением которой является ;

2. дана фигура и надо найти уравнение этой фигуры.

Первая задача сводится к построению графика уравнения и решается, чаще всего, методами математического анализа.

Для решения второй задачи, как следует из определения уравнения фигуры, достаточно:

1. Задать фигуру геометрически, т.е. сформулировать условие, которому удовлетворяют только точки фигуры (довольно часто определение фигуры содержит такое условие);

2. Записать в координатах условие, сформулированное в первом пункте.

15. Эллипс

Эллипсом называется линия, состоящая из всех точек плоскости, для каждой из которых сумма расстояний до двух данных точек и есть величина постоянная (большая, чем расстояние между и).

Точки и называются фокусами эллипса. Обозначив расстояние между фокусами через , а сумму расстояний от точек эллипса до фокусов через , имеем . Если это условие не выполнено, то рассматриваемое множество точек либо отрезок прямой, заключенной между фокусами, либо не содержит ни одной точки.

Из определения эллипса вытекает следующий метод его построения: если концы нерастяжимой нити длины закрепить в точках и и натянуть нить острием карандаша, то при движении острия будет вычерчиваться эллипс с фокусами и и с суммой расстояний от произвольной точки эллипса до фокусов, равной
(Рис. 7.1).

Рис. 7.1.

Составим уравнение эллипса. Для этой цели расположим декартову прямоугольную систему координат таким образом, чтобы ось походила через фокусы и , положительное направление оси - от к , начало координат выберем в середине отрезка . Тогда координаты точек и будут соответственно и .

Пусть _ произвольная точка эллипса, тогда:

,

.

По определению эллипса . Подставляя сюда значения и , имеем:

(7.1)

Уравнение (1) и есть уравнение эллипса. Преобразуя, упростим его:

Возведя обе части уравнения в квадрат и приведя подобные члены, получим: .

Возведем еще раз обе части в квадрат и приведем подобные члены. Получаем или

(7.2)

Положительную величину обозначим через . Тогда уравнение (7.2) примет вид:

(7.3)

Оно называется каноническим уравнение эллипса.

Координаты точек эллипса ограничены неравенствами . Значит, эллипс ограниченная фигура, не выходящая за пределы прямоугольника со сторонами и :

Заметим, что в уравнение (7.3) входят лишь четные степени и . Поэтому, если точка принадлежит эллипсу, то и точки , , также ему принадлежат. А это означает, что эллипс - линия симметричная относительно координатных осей и .

Поэтому для исследования формы эллипса достаточно рассмотреть его в первой координатной четверти, а в остальных четвертях его строение определяется по симметрии. Для первой четверти, из уравнения (7.3) имеем:

(7.4)

При возрастании от до , монотонно убывает от до . График функции изображен на Рис. 7.4.

Рис. 7.4

Достроив остальные четверти эллипса по симметрии, получим весь эллипс (Рис. 7.5).

Размещено на http://www.allbest.ru/

Оси симметрии эллипса (оси и ) называются просто его осями, а центр симметрии - точка _ центром эллипса. Точки пересечения эллипса с осями координат называются вершинами эллипса. Отрезки и , а также их длины и называются полуосями эллипса. В случае, когда фокусы эллипса находятся на оси (как в нашем случае), из равенства , следует, что . В этом случае называется большой полуосью, а _ малой.

Если , то уравнение (7.3) можно переписать в виде:

(7.5)

Это уравнение окружности с центром в начале координат. Эллипс (3) можно получить из окружности (4) сжатием плоскости к оси . Пусть на плоскости выбрана прямоугольная система координат . Тогда преобразование, переводящее произвольную точку в точку , координаты которой задаются формулами , будет окружность (4) переводить в эллипс, заданный соотношением

.

Число называется эксцентриситетом эллипса. Эксцентриситет характеризует форму эллипса: чем ближе к нулю, тем больше эллипс похож на окружность; при увеличении становится более вытянутым (Рис. 7.6).

Фокальными радиусами точки эллипса называются отрезки прямых, соединяющие эту точку с фокусами и. Их длины и задаются формулами и . Прямые называются директрисами эллипса. Директриса называется левой, а _ правой. Так как для эллипса , то и, следовательно, левая директриса располагается левее левой вершины эллипса, а правая - правее правой вершины.

Директрисы обладают следующим свойством: отношение расстояния любой точки эллипса от фокуса к ее расстоянию до соответствующей директрисы есть величина постоянная, равная эксцентриситету, т.е. .

16. Гипербола

Гиперболой называется линия, состоящая из всех точек плоскости, модуль разности расстояний от которых до двух данных точек и есть величина постоянная (не равная нулю и меньшая, чем расстояние между и).

Точки и называются фокусами гиперболы. Пусть по-прежнему расстояние между фокусами равно . Модуль расстояний от точек гиперболы до фокусов и обозначим через . По условию, .

Выбрав декартову систему координат, как в случае эллипса, и используя определение гиперболы, составляем ее уравнение:

(7.6)

где _ координаты произвольной точки гиперболы, .

Уравнение (7.6) называется каноническим уравнением гиперболы.

Из уравнения (7.6) видно, что . Это означает, что вся гипербола располагается вне полосы, ограниченной прямыми и .

Так как в уравнение входят только четные степени и , то гипербола симметрична относительно каждой из координатных осей и начала координат. Поэтому достаточно построить эту кривую в первой четверти: в остальных четвертях гипербола строится по симметрии. Из уравнения (7.6) для первой четверти, имеем:

.

График этой функции от точки уходит неограниченно вправо и вверх (Рис. 7.7), и как угодно близко подходит к прямой:

(7.7)

Поэтому говорят, что гипербола асимптоматически приближается к прямой (7.7), и эту прямую называют асимптотой гиперболы. Из симметрии гиперболы следует, что у нее две асимптоты

.

Построим гиперболу. Сначала строим, так называемый, основной прямоугольник гиперболы, центр которой совпадает с началом координат, а стороны равны и параллельны осям координат. Прямые, на которых расположены диагонали этого прямоугольника, являются асимптотами гиперболы. Сделаем рисунок гиперболы (Рис. 7.8).

Рис 7.8.

Гипербола состоит из двух отдельных ветвей. Центр симметрии гиперболы называется ее центром, оси симметрии называются осями гиперболы. Точки и пересечения гиперболы с осью называются вершинами гиперболы. Величины и называются полуосями гиперболы. Если , то гипербола называется равносторонней.

Эксцентриситетом гиперболы называется число . Для любой гиперболы . Эксцентриситет характеризует форму гиперболы: чем меньше, тем больше вытягивается гипербола вдоль оси . На рисунке 7.9 изображены гиперболы с различными значениями .

Рис. 7.9

Фокальными радиусами точки гиперболы называются отрезки прямых, соединяющие эту точку с фокусами и. Их длины и задаются формулами:

Для правой - ветви ,

Для левой - ветви .

Прямые называются директрисами гиперболы. Как и в случае эллипса, точки гиперболы характеризуются соотношением .

17. Парабола

Параболой называется линия, состоящая из всех точек плоскости, равноудаленных от данной точки (фокуса) и данной прямой (директрисы).

Для вывода канонического уравнения параболы ось проводят через фокус перпендикулярно директрисе в направлении от директрисы к фокусу; начало координат берут в середине отрезка между фокусом и точкой пересечения оси с директрисой . Если обозначить через расстояние фокуса от директрисы, то и уравнение директрисы будет иметь вид .

В выбранной системе координат уравнение параболы имеет вид:

(7.8)

Это уравнение называется каноническим уравнением параболы. Из уравнения (7.8) видно, что может принимать только неотрицательные значения. Значит, на рисунке вся парабола располагается справа от оси . Так как уравнение (7.8) содержит только в четной степени, то парабола симметрична относительно оси , и поэтому достаточно рассмотреть ее форму в первой четверти. В этой четверти .

При неограниченном возрастании неограниченно растет и . Парабола, выходя из начала координат, уходит неограниченно вправо и вверх, четвертой четверти парабола строится по симметрии.

Сделаем рисунок параболы (Рис. 7.10).

Ось симметрии параболы называется ее осью. Точка пересечения с ее осью называется вершиной параболы.

18. Исследование на плоскости уравнения второй степени

Рассмотрим уравнение:

(7.9)

где среди коэффициентов есть отличные от нуля, т.е. (7.9) - уравнение второй степени относительно и .

Возьмем на плоскости две прямоугольные системы координат: , которую будем называть старой, и новую, полученную из поворотом ее вокруг начала координат на угол , .

Старые координаты выражаются через новые координаты по формулам:

(7.10)

Подставив выражения для и в уравнение (8), получим:

(7.11)

Это уравнение в системе координат задает ту же линию, что и уравнение (7. 9) в системе . Если в уравнении (7.9) , то за счет выбора угла в (7.10) можно добиться того, что . Для этого угол надо взять таким, чтобы . Поэтому будем считать , тогда уравнение (7.11) примет вид:

(7.12)

Преобразуя это уравнение и применяя параллельный перенос координатных осей, придем к уравнению:

(7.13)

В зависимости от знаков коэффициентов уравнения (7.13) рассмотрим следующие случаи:

I. , тогда уравнение (7.13) примет вид , где . Это уравнение эллипса.

II. , то, обозначив , имеем . Этому уравнению не удовлетворяет ни одна точка с координатами . Следовательно, это уравнение задает пустое множество.

III. . Обозначая приведем уравнение (12) к виду . Это уравнение гиперболы.

IV. Случаи , , новых результатов не дают.

V. . Тогда уравнение (7.13) можно привести к виду . Это уравнение задает пару прямых , пересекающихся в начале координат.

Рассматривая далее методично все случаи, придем к выводу: уравнение вида (7.9) задает одну из следующих фигур: эллипс, гиперболу, параболу, пару пересекающихся прямых, пару параллельных прямых, прямую, точку или пустое множество.

Рассмотрим частные случаи.

I. D ? 0.

1. Если , то уравнение определяет плоскость, параллельную оси , так как вектор нормали к этой плоскости перпендикулярен оси (проекция ненулевого вектора на ось равна нулю тогда, когда он перпендикулярен этой оси).

2. Аналогично, если , то уравнение определяет плоскость, параллельную оси .

3. Если . То уравнение определяет плоскость, параллельную оси .

4. Если , то уравнение или определяет плоскость, параллельную плоскости . В этом случае вектор нормали перпендикулярен к осям и , т.е. к плоскости .

5. При имеем или _ уравнение плоскости, параллельной координатной плоскости .

6. Если , то уравнение или определяет плоскость, параллельную плоскости .

II. D = 0.

1. Если , то уравнение определяет плоскость, проходящую через начало координат, так как координаты точки удовлетворяют этому уравнению.

2. Если , то уравнение определяет плоскость, вектор нормали которой . Эта плоскость проходит через ось .

3. Аналогично, если , то уравнение определяет плоскость, проходящую через ось .

4. Если , то уравнение определяет плоскость, проходящую через ось .

5. Если , то уравнение или определяет плоскость . Аналогично, уравнения и определяют соответственно плоскости и .

Если в уравнении (6.1) все коэффициенты отличны от нуля, то это уравнение может быть преобразовано к уравнению плоскости в отрезках:

(6.3)

Здесь _ величины отрезков, отсекаемых плоскостью на осях координат.

19. Нормальное уравнение плоскости

Нормальным уравнением плоскости называется уравнение:

, (6.4)

где _ углы между перпендикуляром, опущенным из начала координат на плоскость, и положительным направлением осей координат, а _ расстояние от плоскости до начала координат.

Нормальное уравнение отличается от общего уравнения тем, что в нем коэффициенты при являются координатами единичного вектора , перпендикулярного плоскости, а свободный член - отрицательный.

Общее уравнение (1) приводится к нормальному виду умножением его на нормирующий множитель

,

при этом знак выбирается противоположным знаку свободного члена (если , знак можно выбрать любой).

Размещено на http://www.allbest.ru/

Отклонением точки от плоскости называется ее расстояние от плоскости, взятое со знаком плюс, если точка и начало координат лежат по разные стороны от плоскости (Рис. 6.1), и со знаком минус - если и лежат по одну сторону от плоскости.

Отклонение точки от плоскости определяется по формуле .

Следовательно, чтобы найти расстояние от точки до плоскости, надо привести уравнение плоскости к нормальному виду и в его левую часть вместо подставить координаты точки . Получим отклонение . А расстояние .

20. Взаимное расположение плоскостей

Пусть даны плоскости и . Угол между ними равен углу между перпендикулярными к ним векторам и . Косинус этого угла вычисляется по формуле:

(6.5)

Плоскости параллельны, если и коллинеарны, т.е.:

(6.6)

Условие перпендикулярности плоскостей _ , т.е.:

(6.7)

Если даны три плоскости:

, (6.8)

то их общие точки определяются системой уравнений (6.8).

В случае, если перпендикулярные этим плоскостям векторы , , некомпланарны, три плоскости имеют единственную общую точку.

В самом деле, тогда смешанное произведение , а записанный определитель является определителем системы уравнений (6.8), и, следовательно, система (6.8) имеет единственное решение.

Размещено на Allbest.ru


Подобные документы

  • Вектор в декартовой системе координат как упорядоченная пара точек (начало вектора и его конец). Линейные операции с векторами. Базис на плоскости и в пространстве. Свойства скалярного произведения. Кривые второго порядка. Каноническое уравнение параболы.

    учебное пособие [312,2 K], добавлен 09.03.2009

  • Метод координат. Основные задачи аналитической геометрии на прямой и на плоскости. Основные линии второго порядка. Алгебраическая и геометрическая интерпретация векторов. Уравнение поверхности и уравнение линии в пространстве. Общее уравнение плоскости.

    учебное пособие [687,5 K], добавлен 04.05.2011

  • Векторы в трехмерном пространстве. Линейные операции над векторами. Общее понятие про скалярные величины. Проекции векторов, их свойства. Коммутативность скалярного произведения, неравенство Коши-Буняковского. Примеры скалярного произведения векторов.

    контрольная работа [605,8 K], добавлен 06.05.2012

  • Метод координат как глубокий и мощный аппарат. Основные особенности декартовых координат на прямой, на плоскости и в пространстве. Понятие вектора как направленного отрезка. Рассмотрение координат вектора и важнейших в аналитической геометрии вопросов.

    курсовая работа [573,7 K], добавлен 27.08.2012

  • Линейные однородные дифференциальные уравнения второго порядка, общий вид. Линейная зависимость векторов и функций. Определитель Вронского, практические примеры его нахождения. Неоднородные уравнения второго порядка, теорема и доказательство, решение.

    презентация [272,9 K], добавлен 17.09.2013

  • Линейные операции над векторами. Уравнение прямой, проходящей через две точки. Варианты решений систем линейных уравнений. Действия с матрицами. Модель транспортной задачи, ее решение распределительным методом. Исследование функций с помощью производных.

    контрольная работа [1,0 M], добавлен 09.10.2011

  • Аналитическая геометрия. Декартова система координат, линии на плоскости и кривые второго порядка. Поверхности в трехмерном пространстве. Система n линейных уравнений с n неизвестными. Элементы математического анализа. Основные правила комбинаторики.

    отчет по практике [1,1 M], добавлен 15.11.2014

  • Аксиомы стереометрии, простейшие следствия. Параллельность прямых и плоскостей. Перпендикулярность прямых, плоскостей. Декартовы координаты и векторы в пространстве. Доказательство того, что через две скрещивающиеся можно провести параллельные плоскости.

    книга [4,2 M], добавлен 12.02.2009

  • Линейные операции над векторами. Скалярное произведение двух векторов. Векторное произведение векторов. Графическое решение систем неравенств. Построение графиков функций с помощью геометрических преобразований. Простейшие геометрические преобразования.

    методичка [2,0 M], добавлен 15.06.2015

  • Проверка совместности системы уравнений, ее решение матричным методом. Координаты вектора в четырехмерном пространстве. Решение линейных неравенств, определяющих внутреннюю область треугольника. Определение пределов, производных; исследование функции.

    контрольная работа [567,1 K], добавлен 21.05.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.