Аналитическое решение нелинейного уравнения эллиптического маятника
Решение задачи о нелинейном колебании эллиптического маятника методом частичной дискретизации нелинейных уравнений. Сравнительный анализ полученных результатов с решением задачи соответствующего малым колебаниям, описывающейся системой линейных уравнений.
Рубрика | Математика |
Вид | статья |
Язык | русский |
Дата добавления | 21.06.2018 |
Размер файла | 1,3 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Жетысуский государственный университет им. И.Жаснсугурова, Республика Казахстан
нелинейный колебание маятник эллиптический
АНАЛИТИЧЕСКОЕ РЕШЕНИЕ НЕЛИНЕЙНОГО УРАВНЕНИЯ ЭЛЛИПТИЧЕСКОГО МАЯТНИКА
Сарбасов Е.К.1, Шагатаева З.Е.2
1Кандидат технических наук,
2Магистр образования
Аннотация
В работе получено аналитическое решение задачи о нелинейном колебании эллиптического маятника методом частичной дискретизации нелинейных уравнений. Полученное решение сравнивается с решением задачи, соответствующего малым колебаниям, описывающейся системой линейных уравнений.
Ключевые слова: маятник, нелинейные уравнения, колебания.
Abstract
Sarbasov Y.K.1, Shagatayeva Z.E.2
1Candidate of Technical Sciences,
2Master of education,
Zhetysu State University named after I. Zhansugurov, Republic of Kazakhstan
ANALYTICAL SOLUTION OF THE NONLINEAR EQUATION OF THE ELLIPTIC PENDULUM
In work the analytical solution of a task on nonlinear fluctuation of an elliptic pendulum is received by method of partial sampling of the nonlinear equations. The received decision is compared to the solution of a task, corresponding to small fluctuations, the described system of the linear equations.
Keywords: pendulum, nonlinear equations, fluctuations.
Система имеет две степени свободы. В качестве независимых координат возьмем абцисы х центра тяжести тела М1 и угол отклонения стержня от вертикали. Изучим закономерность нелинейного отклонения тела М2, принимаемого за материальную точку.
Нелинейное уравнение движения эллиптического маятника имеет вид
(1)
Ниже решим следующую задачу
(2)
Для малых углов отклонения ц справедливы следующие уравнения
Начальные условия
Из уравнений (2) имеем
(3)
(4)
Частичная дискретизация [1-4] в классе обобщенных функций дает
(5)
(6)
Общее решение (5) будет иметь вид
(7)
Таким образом решение задачи (1), (3) представляется в виде
(9)
(10)
(11)
Используя метод математической индукции получая
(12)
Где
(13)
(14)
(15)
Методом математической индукции запишем выражение для
(16)
Рис. 1 - Колебание эллиптического маятника
Анализ полученного решения показывает, что система совершает установившееся колебание.
Литература
1. Тюреходжаев А.Н., Шагатаева З.Е. Квазистатический гистерезис одномерной разномодульной системы с контактным сухим трением. Международный конгресс "Механика и трибология транспортных систем 2003". Ростов-на-Дону.
2. Тюреходжаев А.Н., Шагатаева З.Е. О свободном колебании нелинейной разномодульной системы с контактным сухим трением. Вестник КазНТУ №1. Алматы. 2004.
3. Тюреходжаев А.Н., Султаналиева Р.М., Шагатаева З.Е. Резонансное колебание разномодульной системы с контактным сухим трением. Международный научно-технический юбилейный симпозиум "Образование через науку", посвященный 50-летию ФПИ-КТУ им. И.Раззакова. Бишкек, 2004.
4. А.Н.Тюреходжаев, А.Г.Ибраев, М.Ж.Сергазиев, Шагатаева З.Е. Распространение волн в механических системах с нелинейным механизмом диссипации энергии. Международная конференция "Дифференциальные уравнения, теория функции и приложения", посвященная 100-летию со дня рождения академика И.Н.Векуа Новосибирск, 2007г.
Размещено на Allbest.ru
Подобные документы
Порядок и принципы составления дифференциального уравнения, методика нахождения неизвестных значений. Замена исходного дифференциального уравнения на систему n-линейных уравнений относительно n-неизвестных. Формирование и решение системы уравнений.
задача [118,8 K], добавлен 20.09.2013Решение дифференциальных уравнений с разделяющимися переменными, однородных, линейных уравнений первого порядка и уравнений допускающего понижение порядка. Введение функций в решение уравнений. Интегрирование заданных линейных неоднородных уравнений.
контрольная работа [92,7 K], добавлен 09.02.2012Математическая модель задачи. Решение транспортной задачи методом потенциалов. Значение целевой функции. Система, состоящая из 7 уравнений с 8-ю неизвестными. Решение задач графическим методом. Выделение полуплоскости, соответствующей неравенству.
контрольная работа [23,5 K], добавлен 12.06.2011Графическое решение нелинейного уравнения. Уточнение значение одного из действительных решений уравнения методами половинного деления, Ньютона–Рафсона, секущих, простой итерации, хорд и касательных, конечно-разностным и комбинированным методом Ньютона.
лабораторная работа [32,7 K], добавлен 11.06.2011Выполнение действий над матрицами. Определение обратной матрицы. Решение матричных уравнений и системы уравнений матричным способом, используя алгебраические дополнения. Исследование и решение системы линейных уравнений методом Крамера и Гаусса.
контрольная работа [63,2 K], добавлен 24.10.2010Характеристика уравнений с разделяющимися переменными. Сущность метода Бернулли и метода Лагранжа, задачи Коша. Решение линейных уравнений n-го порядка. Фундаментальная система решений - набор линейно независимых решений однородной системы уравнений.
контрольная работа [355,9 K], добавлен 28.02.2011Решение системы линейных уравнений методом Гауса. Преобразования расширенной матрицы, приведение ее к треугольному виду. Средства матричного исчисления. Вычисление алгебраических дополнений матрицы. Решение матричного уравнения по правилу Крамера.
задача [26,8 K], добавлен 29.05.2012Дифференциальные уравнения Риккати. Общее решение линейного уравнения. Нахождение всех возможных решений дифференциального уравнения Бернулли. Решение уравнений с разделяющимися переменными. Общее и особое решения дифференциального уравнения Клеро.
курсовая работа [347,1 K], добавлен 26.01.2015Решение системы линейных уравнений двумя способами: по формулам Крамера и методом Гаусса. Решение задачи на нахождение производных, пользуясь правилами и формулами дифференцирования. Исследование заданных функций методами дифференциального исчисления.
контрольная работа [161,0 K], добавлен 16.03.2010Решение нелинейных уравнений методом касательных (Ньютона), особенности и этапы данного процесса. Механизм интерполирования функции и численное интегрирование. Приближенное решение обыкновенных дифференциальных уравнений первого порядка методом Эйлера.
курсовая работа [508,1 K], добавлен 16.12.2015