Аксиоматический подход к исследованию методов прикладной математики (на примере задачи выбора способа вычисления удельного веса факторов в мультипликативных индексных моделях)
Общая схема использования аксиоматического подхода при сопоставлении и выборе методов обработки данных. Задача вычисления удельного веса индексных факторов в мультипликативных индексных моделях. Характеристика основных методов вычисления вклада факторов.
Рубрика | Математика |
Вид | статья |
Язык | русский |
Дата добавления | 20.07.2021 |
Размер файла | 406,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Постановка задачи вычисления значения определённых интегралов от заданных функций. Классификация методов численного интегрирования и изучение некоторых из них: методы Ньютона-Котеса (формула трапеций, формула Симпсона), квадратурные формулы Гаусса.
реферат [99,0 K], добавлен 05.09.2010Исследование способа вычисления кратных интегралов методом Монте-Карло. Общая схема метода Монте-Карло, вычисление определенных и кратных интегралов. Разработка программы, выполняющей задачи вычисления значений некоторых примеров кратных интегралов.
курсовая работа [349,3 K], добавлен 12.10.2009Условия возникновения и особенности вычисления функций Матье, характеристика дифференциального уравнения Матье. Алгоритм решения задачи и алгоритмы вычисления радиальных функций эллиптического цилиндра. Определение точности результатов вычисления.
научная работа [73,8 K], добавлен 02.05.2011Множество неотрицательных действительных чисел как интерпретируемое подмножество R. Делимость в мультипликативных полугруппах. Строение числовых НОД и НОК полугрупп. Изучение мультипликативных полугрупп неотрицательных действительных чисел с 0 и 1.
дипломная работа [177,9 K], добавлен 27.05.2008Построение приближающей функции, используя исходные данные, с помощью методов Лагранжа, Ньютона и Эйткена (простая и упрощенная форма реализации). Алгоритм вычисления интерполяционного многочлена. Сравнение результатов реализации методов в среде Mathcad.
курсовая работа [299,3 K], добавлен 30.04.2011Возникновение науки исследования операций и особенности применения операционных методов. Отделение формы задачи от ее содержания с помощью процесса абстракции. Классы задач. Некоторые математические методы, используемые для получения решений на моделях.
реферат [17,7 K], добавлен 27.06.2011Оптимизация как раздел математики, ее определение, сущность, цели, формулировка и особенности постановки задач. Общая характеристика различных методов математической оптимизации функции. Листинг программ основных методов решения задач оптимизации функции.
курсовая работа [414,1 K], добавлен 20.01.2010Формулы вычисления дисперсии суммы двух случайных величин с использованием категории математического ожидания. Характеристика понятий дисперсии. Особенности ее вычисления во взаимосвязи со средним квадратичным отклонением, определение размерности.
презентация [80,4 K], добавлен 01.11.2013Словесная, математическая постановка исходной задачи. Исследование математической задачи на корректность. Применение метода экспертных оценок и парных сравнений основных объективных, субъективных факторов, послуживших причиной к поступлению учиться в МАИ.
курсовая работа [145,1 K], добавлен 19.12.2009Задачи и методы линейной алгебры. Свойства определителей и порядок их вычисления. Нахождение обратной матрицы методом Гаусса. Разработка вычислительного алгоритма в программе Pascal ABC для вычисления определителей и нахождения обратной матрицы.
курсовая работа [1,1 M], добавлен 01.02.2013Исторический процесс развития взглядов на существо математики как науки, основные этапы формирования аксиоматического метода. Теории групп, множеств, отображений и конгруэнтности (равенства) отрезков. Основные аксиоматические теоремы и их доказательства.
курсовая работа [26,2 K], добавлен 24.05.2009Число Пи как математическая константа. Основные особенности вычисления числа Пи. Методы определения численного значения числа Пи. Влияние трудов И. Ньютона и Г. Лейбница на ускорение вычисления приближенных значений Пи. Анализ формул древних ученных.
курсовая работа [1,8 M], добавлен 26.09.2012Математическая модель: определение интеграла и его геометрический смысл. Приближённые методы вычисления. Формула прямоугольников, трапеций, парабол. Программа для вычисления значения интеграла методом трапеций в среде пакета Matlab. Цикл if и for.
контрольная работа [262,8 K], добавлен 05.01.2015Сущность и методы определения первообразной в математическом анализе. Особенности вычисления первообразной как нахождение неопределённого интеграла. Анализ техники интегрирования. Формула Ньютона–Лейбница. Основные положения дифференциальной теории Галуа.
контрольная работа [71,8 K], добавлен 05.11.2011Изучение возникновения математики и использования математических методов Древнем Китае. Особенности задач китайцев по численному решению уравнений и геометрических задач, приводящих к уравнениям третьей степени. Выдающиеся математики Древнего Китая.
реферат [27,6 K], добавлен 11.09.2010Особенности системы индексных обозначений. Специфика суммирования в тензорной алгебре. Главные операции в алгебре, которые называются сложением, умножением и свертыванием. Применение операции внутреннего умножения. Симметричные и антисимметричные объекты.
реферат [345,7 K], добавлен 07.12.2009Понятие определенного интеграла, его геометрический смысл. Численные методы вычисления определенных интегралов. Формулы прямоугольников и трапеций. Применение пакета Mathcad для вычисления интегралов, проверка результатов вычислений с помощью Mathcad.
курсовая работа [1,0 M], добавлен 11.03.2013Осуществление интерполяции с помощью полинома Ньютона. Уточнение значения корня на заданном интервале тремя итерациями и нахождение погрешности вычисления. Применение методов Ньютона, Сампсона и Эйлера при решении задач. Вычисление производной функции.
контрольная работа [155,2 K], добавлен 02.06.2011Вычисление относительной и абсолютной погрешности табличных определённых интегралов. Приближенные методы вычисления определённых интегралов: метод прямоугольников, трапеций, парабол (метод Симпсона). Оценка точности вычисления "не берущихся" интегралов.
курсовая работа [187,8 K], добавлен 18.05.2019Основные понятия аксиоматической теории. Аксиоматический метод – фундаментальнейший метод организации и умножения научного знания в самых разных его областях. Этапы развития аксиоматического метода в науке. Евклидова система обоснования геометрии.
курсовая работа [28,9 K], добавлен 12.05.2009